86 On Bessel’s Functions of the Second Kind

Any entire linear combination of these functions will accordingly also be a solution.
Such a combination is
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Adding to the numerator of this fraction the null expression J,(x) — (—1)"J_,(x) will
not affect it, so that we may write our solution
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If, now, we let An approach zero, we obtain
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as a second solution of Bessel’s equation when n is a positive integer. This function is
called a Bessel’s function of the second kind of order n.
Now we obtain at once by differentiation
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In order to differentiate the reciprocals of I'(n + p + 1) and I'(—n + p + 1) with re-
spect to n we will introduce a new function using a notation similar to that of Gauss,

and write
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This function ¢ will evidently have the property

P(x) =

1
v(x) + T U(x +1);

so that if x is a positive integer,
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and (1) has approximately the value —0.5772. In terms of this function we shall have
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