
86 On Bessel’s Functions of the Second Kind

Any entire linear combination of these functions will accordingly also be a solution.
Such a combination is

(−1)nJ−n+�n(x)− Jn−�n(x)
2�n

.

Adding to the numerator of this fraction the null expression Jn(x)− (−1)nJ−n(x) will
not affect it, so that we may write our solution

(−1)n+1[J−u(x)− J−n+�n(x)] + Jn(x)− Jn−�n(x)
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.

If, now, we let �n approach zero, we obtain
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as a second solution of Bessel’s equation when n is a positive integer. This function is
called a Bessel’s function of the second kind of order n.

Now we obtain at once by differentiation
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In order to differentiate the reciprocals of �(n+p+1) and �(−n+p+1) with re-
spect to n we will introduce a new function using a notation similar to that of Gauss,
and write

ψ(x) = d log�(x)

dx
.

This function ψ will evidently have the property

ψ(x)+ 1
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= ψ(x + 1);

so that if x is a positive integer,
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andψ(1) has approximately the value −0.5772. In terms of this function we shall have

d�(x)
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= �(x) · ψ(x),


