
CHAPTER FOUR

Actions, Plans, and Direct Effects

He whose actions exceed his wisdom,
his wisdom shall endure.

Rabbi Hanina ben Dosa
(1st centurya.d.)

Preface

So far, our analysis of causal effects has focused on primitive interventions of the form
do(x), which stood for setting the value of variableX to a fixed constant,x, and ask-
ing for the effect of this action on the probabilities of some response variablesY. In this
chapter we introduce several extensions of this analysis.

First (Section 4.1), we discuss the status of actions vis-à-vis observations in proba-
bility theory, decision analysis, and causal modeling, and we advance the thesis that the
main role of causal models is to facilitate the evaluation of the effect ofnovelactions and
policies that were unanticipated during the construction of the model.

In Section 4.2 we extend the identification analysis of Chapter 3 to conditional actions
of the form “dox if you seez” and stochastic policies of the form “dox with proba-
bility p if you seez.” We shall see that the evaluation and identification of these more
elaborate interventions can be obtained from the analysis of primitive interventions. In
Section 4.3, we use the intervention calculus developed in Chapter 3 to give a graphical
characterization of the set of semi-Markovian models for which the causal effect of one
variable on another can be identified.

We address in Section 4.4 the problem of evaluating the effect of sequential plans –
namely, sequences of time-varying actions (some taken concurrently) designed to pro-
duce a certain outcome. We provide a graphical method of estimating the effect of such
plans from nonexperimental observations in which some of the actions are influenced
by their predecessors, some observations are influenced by the actions, and some con-
founding variables are unmeasured. We show that there is substantial advantage to ana-
lyzing a plan into its constituent actions rather than treating the set of actions as a single
entity.

Finally, in Section 4.5 we address the question of distinguishing direct from indirect
effects. We show that direct effects can be identified by the graphical method developed
in Section 4.4. An example using alleged sex discrimination in college admission will
serve to demonstrate the assumptions needed for proper analysis of direct effects.
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4.1 INTRODUCTION

4.1.1 Actions, Acts, and Probabilities

Actions admit two interpretations: reactive and deliberative. The reactive interpretation
sees action as a consequence of an agent’s beliefs, disposition, and environmental inputs,
as in “Adam ate the apple because Eve handed it to him.” The deliberative interpretation
sees action as an option of choice in contemplated decision making, usually involving
comparison of consequences, as in “Adam was wondering what God would do if he ate
the apple.” We shall distinguish the two views by calling the first “act” and the second
“action.” An act is viewed from the outside, an action from the inside. Therefore, an
act can be predicted and can serve as evidence for the actor’s stimuli and motivations
(provided the actor is part of our model). Actions, in contrast, can neither be predicted
nor provide evidence since (by definition) they are pending deliberation and turn intoacts
once executed.

The confusion between actions and acts has led to Newcomb’s paradox (Nozick1969)
and other oddities in the so-called evidential decision theory, which encourages decision
makers to take into consideration the evidence that an action would provide, if enacted.
This bizarre theory seems to have loomed from Jeffrey’s influential bookThe Logic of
Decision(Jeffrey 1965), in which actions are treated as ordinary events (rather than inter-
ventions) and, accordingly, the effects of actions are obtained through conditionalization
rather than through a mechanism-modifying operation likedo(x). (See Stalnaker 1972;
Gibbard and Harper 1976; Skyrms 1980; Meek and Glymour 1994; Hitchcock 1996.)

Traditional decision theory1 instructs rational agents to choose the optionx that max-
imizes expected utility,2

U(x) =
∑
y

P(y | do(x))u(y),

whereu(y) is the utility of outcomey; in contrast, “evidential decision” theory calls for
maximizing the conditional expectation

Uev(x) =
∑
y

P(y | x)u(y),

in whichx is (improperly) treated as an observed proposition.
The paradoxes that emerge from this fallacy are obvious: patients should avoid going

to the doctor “to reduce the probability that one is seriously ill” (Skyrms 1980, p. 130);

1 I purposely avoid the common title “causal decision theory” in order to suppress even the slightest
hint that any alternative, noncausal theory can be used to guide decisions.

2 Following a suggestion of Stalnaker (1972), Gibbard and Harper (1976) usedP(x �→ y) in U(x),
rather thanP(y | do(x)), wherex �→ y stands for the subjunctive conditional “y if it were x.”
The semantics of the two operators are closely related (see Section 7.4), but the equation-removal
interpretation of thedo(x) operator is less ambiguous and clearly suppresses inference from effect
to cause.
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workers should never hurry to work, to reduce the probability of having overslept; students
should not prepare for exams, lest this would prove them behind in their studies; and so
on. In short, all remedial actions should be banished lest they increase the probability
that a remedy is indeed needed.

The oddity in this kind of logic stems from treating actions as acts that are governed
by past associations instead of as objects of free choice, as dictated by the semantics of
thedo(x) operator. This “evidential” decision theory preaches that one should never ig-
nore genuine statistical evidence (in our case, the evidence that an act normally provides
regarding whether the act is needed), but decision theory proper reminds us that actions –
by their very definition – render such evidence irrelevant to the decision at hand, for ac-
tionschangethe probabilities that acts normally obey.3

The moral of this story can be summarized in the following mnemonic rhymes:

Whatever evidence an act might provide
On facts that preceded the act,
Should never be used to help one decide
On whether to choose that same act.

Evidential decision theory was a passing episode in the philosophical literature, and
no philosopher today takes the original version of this theory seriously. Still, some re-
cent attempts have been made to revive interest in Jeffrey’s expected utility by replacing
P(y | x) with P(y | x,K), whereK stands for various background contexts, chosen
to suppress spurious associations (as in (3.13)) (Price 1991; Hitchcock 1996). Such at-
tempts echo an overly restrictive empiricist tradition, according to which rational agents
live and die by one source of information – statistical associations – and hence expected
utilities should admit no other operation but Bayes’s conditionalization. This tradition
is rapidly giving way to a more accommodating conception: rational agents should act
according to theories of actions; naturally, such theories demand action-specific con-
ditionalization (e.g.do(x)) while reserving Bayes’s conditionalization for representing
passive observations (see Goldszmidt and Pearl 1992; Meek and Glymour 1994; Wood-
ward 1995).

In principle, actions are not part of probability theory, and understandably so: proba-
bilities capture normal relationships in the world, whereas actions represent interventions
that perturb those relationships. It is no wonder, then, that actions are treated as foreign
entities throughout the literature on probability and statistics; they serve neither as argu-
ments of probability expressions nor as events for conditioning such expressions.

Even in the statistical decision-theoretic literature (e.g. Savage 1954), where actions
are the main target of analysis, the symbols given to actions serve merely as indices for
distinguishing one probability function from another, not as entities that stand in logi-
cal relationships to the variables on which probabilities are defined. Savage (1954, p. 14)
defined “act” as a “function attaching a consequence to each state of the world,” and
he treated a chain of decisions, one leading to other, as a single decision. However, the

3 Such evidence is rendered irrelevant within the actor’s own probability space; in multiagent de-
cision situations, however, each agent should definitely be cognizant of how other agents might
interpret each of his pending “would-be” acts.
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logic that leads us to infer the consequences of actions and strategies from more elemen-
tary considerations is left out of the formalism. For example, consider the actions: “raise
taxes,” “lower taxes,” and “raise interest rates.” The consequences of all three actions
must be specified separately, prior to analysis; none can be inferred from the others. As
a result, if we are given two probabilities,PA andPB, denoting the probabilities prevail-
ing under actionsA orB, respectively, there is no way we can deduce from this input the
probabilityPA∧B corresponding to the joint actionA ∧ B or indeed any Boolean com-
bination of the propositionsA andB. This means that, in principle, the impact of all
anticipated joint actions would need to be specified in advance – an insurmountable task.

The peculiar status of actions in probability theory can be seen most clearly in com-
parison to the status of observations. By specifying a probability functionP(s) on the
possible states of the world, we automatically specify how probabilities should change
with every conceivable observatione, sinceP(s) permits us to compute (by condition-
ing one) the posterior probabilitiesP(E | e) for every pair of eventsE ande. However,
specifyingP(s) tells us nothing about how probabilities should change in response to
an external actiondo(A). In general, if an actiondo(A) is to be described as a function
that takesP(s) and transforms it toPA(s), thenP(s) tells us nothing about the nature of
PA(s), even whenA is an elementary event for whichP(A) is well-defined (e.g., “raise
the temperature by 1 degree” or “turn the sprinkler on”). With the exception of the triv-
ial requirement thatPA(s) be zero ifs implies¬A, a requirement that applies uniformly
to everyP(s), probability theory does not tell us howPA(s) should differ fromP ′A(s),
whereP ′(s) is some other preaction probability function. Conditioning onA is clearly
inadequate for capturing this transformation, as we have seen in many examples in Chap-
ters 1 and 3 (see e.g. Section 1.3.1), because conditioning represents passive observations
in an unchanging world whereas actions change the world.

Drawing analogy to visual perception, we may say that the information contained in
P(s) is analogous to a precise description of a three-dimensional object; it is sufficient
for predicting how that object will be viewed from any angle outside the object, but it
is insufficient for predicting how the object will be viewed if manipulated and squeezed
by external forces. Additional information about the physical properties of the object
must be supplied for making such predictions. By analogy, the additional information
required for describing the transformation fromP(s) to PA(s) should identify those ele-
ments of the world that remain invariant under the actiondo(A). This extra information
is provided by causal knowledge, and thedo(·) operator enables us to capture the in-
variant elements (thus definingPA(s)) by locally modifying the graph or the structural
equations. The next section will compare this device to the way actions are handled in
standard decision theory.

4.1.2 Actions in Decision Analysis

Instead of introducing new operators into probability calculus, the traditional approach
has been to attribute the differences between seeing and doing to differences in the to-
tal evidence available. Consider the statements: “the barometer reading was observed to
bex” and “the barometer reading was set to levelx.” The former helps us predict the
weather, the latter does not. While the evidence described in the first statement is limited
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to the reading of the barometer, the second statement also tells us that the barometer was
manipulated by some agent, and conditioning on this additional evidence should render
the barometer reading irrelevant to predicting the rain.

The practical aspects of this approach amount to embracing the acting agents as vari-
ables in the analysis, constructing an augmented distribution function including the de-
cisions of those agents, and inferring the effect of actions by conditioning those decision
variables to particular values. Thus, for example, the agent manipulating the barometer
might enter the system as a decision variable “squeezing the barometer”; after incorpo-
rating this variable into the probability distribution, we could infer the impact of manipu-
lating the barometer simply by conditioning the augmented distribution on the event “the
barometer was squeezed by forcey and has reached levelx.”

For this conditioning method to work properly in evaluating the effect of future ac-
tions, the manipulating agent must be treated as an ideal experimenter acting out of free
will, and the associated decision variables must be treated as exogenous – causally un-
affected by other variables in the system. For example, if the augmented probability
function encodes the fact that the current owner of the barometer tends to squeeze the
barometer each time she feels arthritis pain, we will be unable to use that function for
evaluating the effects of deliberate squeezing of the barometer, even by the same owner.
Recalling the difference between acts and actions, whenever we set out to calculate the ef-
fect of a pending action, we must ignore all mechanisms that constrained or triggered the
execution of that action in the past. Accordingly, the event “The barometer was squeezed”
must enter the augmented probability function as independent of all events that occurred
prior to the time of manipulation, similar to the way action variableF entered the aug-
mented network in Figure 3.2.

This solution corresponds precisely to the way actions are treated in decision anal-
ysis, as depicted in the literature on influence diagrams (IDs) (Howard and Matheson
1981; Shachter 1986; Pearl 1988b, chap. 6). Each decision variable is represented as ex-
ogenous variable (a parentless node in the diagram), and its impact on other variables is
assessed and encoded in terms of conditional probabilities, similar to the impact of any
other parent node in the diagram.4

The difficulty with this approach is that we need to anticipate in advance, and rep-
resent explicitly, all actions whose effects we might wish to evaluate in the future. This
renders the modeling process unduly cumbersome, if not totally unmanageable. In cir-
cuit diagnosis, for example, it would be awkward to represent every conceivable act of
component replacement (similarly, every conceivable connection to a voltage source,
current source, etc.) as a node in the diagram. Instead, the effects of such replacements
are implicit in the circuit diagram itself and can be deduced from the diagram, given its
causal interpretation. In econometric modeling likewise, it would be awkward to repre-
sent every conceivable variant of policy intervention as a new variable in the economic
equations. Instead, the effects of such interventions can be deduced from the structural

4 The ID literature’s insistence on divorcing the links in the ID from any causal interpretation (Howard
and Matheson 1981; Howard 1990) is at odds with prevailing practice. The causal interpretation is
what allows us to treat decision variables as root nodes, unassociated with all other nodes (except
their descendants).
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interpretation of those equations, if only we can tie the immediate effects of each policy
to the corresponding variables and parameters in the equations. The compound action
“raise taxes and lower interest rates,” for example, need not be introduced as a new vari-
able in the equations, because the effect of that action can be deduced if we have the
quantities “taxation level” and “interest rates” already represented as (either exogenous
or endogenous) variables in the equations.

The ability to predict the effect of interventions without enumerating those interven-
tions in advance is one of the main advantages we draw from causal modeling and one
of the main functions served by the notion of causation. Since the number of actions
or action combinations is enormous, they cannot be represented explicitly in the model
but rather must be indexed by the propositions that each action enforces directly. In-
direct consequences of enforcing those propositions are then inferred from the causal
relationships among the variables represented in the model. We will return to this theme
in Chapter 7 (Section 7.2.4), where we further explore the invariance assumptions that
must be met for this encoding scheme to work.

4.1.3 Actions and Counterfactuals

As an alternative to Bayesian conditioning, philosophers (Lewis 1976; Gardenfors 1988)
have studied another probability transformation called “imaging,” which was deemed
useful in the analysis of subjunctive conditionals and which more adequately represents
the transformations associated with actions. Whereas Bayes conditioning ofP(s | e)
transfers the entire probability mass from states excluded bye to the remaining states (in
proportion to their current probabilities,P(s)), imaging works differently: each excluded
states transfers its mass individually to a select set of statesS∗(s) that are considered to
be “closest” tos (see Section 7.4.3). Although providing a more adequate and general
framework for actions (Gibbard and Harper 1976), imaging leaves the precise specifica-
tion of the selection functionS∗(s) almost unconstrained. Consequently, the problem of
enumerating future actions is replaced by the problem of encoding distances among states
in a way that would be both economical and respectful of common understanding of the
causal laws that operate in the domain. The second requirement is not trivial, consider-
ing that indirect ramifications of actions often result in worlds that are quite dissimilar to
the one from which we start (Fine 1975).

The difficulties associated with making the closest-world approach conform to causal
laws will be further elaborated in Chapter 7 (Section 7.4). The structural approach pur-
sued in this book escapes these difficulties by basing the notion of interventions directly
on causal mechanisms and by capitalizing on the properties of invariance and auton-
omy that accompany these mechanisms. This mechanism-modification approach can be
viewed as a special instance of the closest-world approach, where the closeness measure
is crafted so as to respect the causal mechanisms in the domain; the selection function
S∗(s) that ensues is represented in (3.11) (see discussion that follows).

The operationality of this mechanism-modification semantics was demonstrated in
Chapter 3 and led to the quantitative predictions of the effects of actions, including ac-
tions that were not contemplated during the model’s construction. Thedo calculus that
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emerged (Theorem 3.4.1) extends this prediction facility to cases where some of the
variables are unobserved. In Chapter 7 we further use the mechanism-modification inter-
pretation to provide semantics for counterfactual statements, as outlined in Section1.1.4.
In this chapter, we will extend the applications of thedo calculus in several directions,
as outlined in the Preface.

4.2 CONDITIONAL ACTIONS AND STOCHASTIC POLICIES

The interventions considered in our analysis of identification (Sections 3.3–3.4) were
limited to actions that merely force a variable or a group of variablesX to take on some
specified valuex. In general (see the process control example in Section 3.2.3), inter-
ventions may involve complex policies in which a variableX is made to respond in a
specified way to some setZ of other variables – say, through a functional relationship
x = g(z) or through a stochastic relationship wherebyX is set tox with probability
P ∗(x | z). We will show, based on Pearl (1994b), that identifying the effect of such poli-
cies is equivalent to identifying the expressionP(y | x̂, z).

LetP(y | do(X = g(z))) stand for the distribution (ofY ) prevailing under the policy
do(X = g(z)). To computeP(y | do(X = g(z))), we condition onZ and write

P(y | do(X = g(z))) =
∑
z

P(y | do(X = g(z)), z)P(z | do(X = g(z)))

=
∑
z

P(y | x̂, z)|x=g(z)P(z)

= Ez[P(y | x̂, z)|x=g(z)].
The equality

P(z | do(X = g(z))) = P(z)
stems, of course, from the fact thatZ cannot be a descendant ofX; hence, any control ex-
erted onX can have no effect on the distribution ofZ. Thus, we see that the causal effect
of a policydo(X = g(z)) can be evaluated directly from the expression ofP(y | x̂, z)
simply by substitutingg(z) for x and taking the expectation overZ (using the observed
distributionP(z)).

This identifiability criterion for conditional policy is somewhat stricter than that for
unconditional intervention. Clearly, if a policydo(X = g(z)) is identifiable then the sim-
ple interventiondo(X = x) is identifiable as well, since we can always obtain the latter
by settingg(z) = x. The converse does not hold, however, because conditioning onZ

might create dependencies that will prevent the successful reduction ofP(y | x̂, z) to a
hat-free expression.

A stochastic policy, which imposes a new conditional distributionP ∗(x | z) for x,
can be handled in a similar manner. We regard the stochastic intervention as a random
process in which the unconditional interventiondo(X = x) is enforced with probability
P ∗(x | z). Thus, givenZ = z, the interventiondo(X = x) will occur with probability
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P ∗(x | z) and will produce a causal effect given byP(y | x̂, z). Averaging overx and
z gives the effect (onY ) of the stochastic policyP ∗(x | z):

P(y)|P ∗(x | z) =
∑
x

∑
z

P(y | x̂, z)P ∗(x | z)P(z).

BecauseP ∗(x | z) is specified externally, we see again that the identifiability ofP(y |
x̂, z) is a necessary and sufficient condition for the identifiability of any stochastic policy
that shapes the distribution ofX by the outcome ofZ.

Of special importance in planning is a STRIPS-like action (Fikes and Nilsson 1971)
whose immediate effectsX = x depend on the satisfaction of some enabling precondi-
tionC(w) on a setW of variables. To represent such actions, we letZ = W ∪ PAX and
set

P ∗(x | z) =

P(x | paX) if C(w) = false,

1 if C(w) = true andX = x,
0 if C(w) = true andX 6= x.

4.3 WHEN IS THE EFFECT OF AN ACTION IDENTIFIABLE?

In Chapter 3 we developed several graphical criteria for recognizing when the effect of
one variable on another,P(y | do(x)), is identifiable in the presence of unmeasured
variables. These criteria, like the back-door (Theorem 3.3.2) and front-door (Theorem
3.3.4), are special cases of a more general class of semi-Markovian models for which
repeated application of the inference rules ofdo calculus (Theorem 3.4.1) will reduce
P(y | x̂) to a hat-free expression, thus rendering it identifiable. The semi-Markovian
model of Figure 3.1 (or Figure 3.8(f )) is an example where direct application of either the
back-door or front-door criterion would not be sufficient for identifyingP(y | x̂) and yet
the expression is reducible (hence identifiable) by a sequence of inference rules of Theo-
rem 3.4.1. In this section we establish a complete characterization of the class of models
in which the causal effectP(y | x̂) is identifiable indo calculus.

4.3.1 Graphical Conditions for Identification

Theorem 4.3.1 characterizes the class of “do-identifiable” models in the form of four
graphical conditions, any one of which is sufficient for the identification ofP(y | x̂)
whenX andY are singleton nodes in the graph. Theorem 4.3.2 then asserts the com-
pleteness (or necessity) of these four conditions; one of which must hold in the model for
P(y | x̂) to be identifiable indo calculus. Whether these four conditions are necessary
in general (in accordance with the semantics of Definition 3.2.4) depends on whether the
inference rules ofdo calculus are complete. This question, to the best of my knowledge,
is still open.

Theorem 4.3.1(Galles and Pearl 1995)
Let X and Y denote two singleton variables in a semi-Markovian model characterized by
graph G. A sufficient condition for the identifiability ofP(y | x̂) is that G satisfy one of
the following four conditions.
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B2
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B

X

Z

YY

(a) (b)

Figure 4.1 Condition 3 of Theorem 4.3.1. In (a), the
set{B1, B2} blocks all back-door paths fromX to Y,
andP(b1, b2 | x̂) = P(b1, b2). In (b), the nodeB
blocks all back-door paths fromX to Y, andP(b | x̂)
is identifiable using Condition 4.

1. There is no back-door path from X to Y inG; that is,(X⊥⊥Y )GX .
2. There is no directed path from X to Y in G.

3. There exists a set of nodes B that blocks all back-door paths from X to Y so that
P(b | x̂) is identifiable.(A special case of this condition occurs whenB consists
entirely of nondescendants ofX, in which caseP(b | x̂) reduces immediately to
P(b).)

4. There exist sets of nodesZ1 andZ2 such that:
(i) Z1 blocks every directed path from X to Y(i.e.,(Y ⊥⊥X | Z1)G

Z1X
);

(ii) Z2 blocks all back-door paths betweenZ1 andY(i.e.,(Y ⊥⊥Z1 | Z2)G
XZ1
);

(iii) Z2 blocks all back-door paths between X andZ1 (i.e., (X⊥⊥Z1 | Z2)GX ;
and

(iv) Z2 does not activate any back-door paths from X to Y(i.e., (X⊥⊥Y |
Z1, Z2)G

Z1X(Z2)
). (This condition holds if(i)–(iii) are met and nomember

of Z2 is a descendant ofX.)
(A special case of condition 4 occurs whenZ2 = ∅ and there is no back-door
path fromX toZ1 or fromZ1 to Y.)

Proof
Condition 1. This condition follows directly from Rule 2 (see Theorem 3.4.1). If

(Y ⊥⊥X)GX then we can immediately changeP(y | x̂) toP(y | x), so the query is iden-
tifiable.

Condition 2. If there is no directed path fromX toY inG, then(Y ⊥⊥X)G
X
. Hence,

by Rule 3,P(y | x̂) = P(y) and so the query is identifiable.
Condition 3. If there is a set of nodesB that blocks all back-door paths fromX to Y

(i.e.,(Y ⊥⊥X | B)GX), then we can expandP(y | x̂) as
∑

b P(y | x̂, b)P(b | x̂) and, by
Rule 2, rewriteP(y | x̂, b) asP(y | x, b). If the query(b | x̂) is identifiable, then the
original query must also be identifiable. See examples in Figure 4.1.

Condition 4. If there is a set of nodesZ1 that block all directed paths fromX to Y
and a set of nodesZ2 that block all back-door paths betweenY andZ1 in G

X
, then we

expandP(y | x̂) = ∑z1,z2
P(y | x̂, z1, z2)P(z1, z2 | x̂) and rewriteP(y | x̂, z1, z2) as

P(y | x̂, ẑ1, z2) using Rule 2, since all back-door paths betweenZ1 andY are blocked by
Z2 in G

X
. We can reduceP(y | x̂, ẑ1, z2) to P(y | ẑ1, z2) using Rule 3, since(Y ⊥⊥X |

Z1, Z2)G
Z1X(Z2)

. We can rewriteP(y | ẑ1, z2) asP(y | z1, z2) if (Y ⊥⊥Z1 | Z2)GZ1
. The

only way that this independence cannot hold is if there is a path fromY to Z1 through
X, since(Y ⊥⊥Z1 | Z2)G

XZ1
. However, we can block this path by conditioning and
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Z1

Y

X

(a) (b) (c)

Z1 Z1

Z2 Z2

Y

X

Y

X

Figure 4.2 Condition 4 of Theorem 4.3.1. In (a),Z1 blocks all directed paths fromX to Y, and the
empty set blocks all back-door paths fromZ1 to Y inG

X
and all back-door paths fromX toZ1 inG.

In (b) and (c),Z1 blocks all directed paths fromX to Y, andZ2 blocks all back-door paths fromZ1

to Y in G
X

and all back-door paths fromX toZ1 in G.

summing overX and so derive
∑

x ′ P(y | ẑ1, z2, x
′)P(x ′ | ẑ1, z2). Now we can rewrite

P(y | ẑ1, z2, x
′) asP(y | z1, z2, x

′) using Rule 2. TheP(x ′ | ẑ1, z2) term can be rewrit-
ten asP(x ′ | z2) using Rule 3, sinceZ1 is a child ofX and the graph is acyclic. The query
can therefore be rewritten as

∑
z1,z2

∑
x ′ P(y | z1, z2, x

′)P(x ′ | z2)P(z1, z2 | x̂), and
we haveP(z1, z2 | x̂) = P(z2 | x̂)P(z1 | x̂, z2). SinceZ2 consists of nondescendants of
X, we can rewriteP(z2 | x̂) asP(z2) using Rule 3. SinceZ2 blocks all back-door paths
from X to Z1, we can rewriteP(z1 | x̂, z2) asP(z1 | x, z2) using Rule 2. The entire
query can thus be rewritten as

∑
z1,z2

∑
x ′ P(y | z1, z2, x

′)P(x ′ | z2)P(z1 | x, z2)P(z2).

See examples in Figure 4.2.

Theorem 4.3.2
The four conditions of Theorem 4.3.1 are necessary for identifiability indocalculus. That
is, if all four conditions of Theorem 4.3.1 fail in a graph G, then there exists no finite
sequence of inference rules that reducesP(y | x̂) to a hat-free expression.

A proof of Theorem 4.3.2 is given in Galles and Pearl (1995).

4.3.2 Remarks on Efficiency

In implementing Theorem 4.3.1 as a systematic method for determining identifiability,
Conditions 3 and 4 would seem to require exhaustive search. In order to prove that Con-
dition 3 does not hold, for instance, we need to prove that no such blocking setB can
exist. Fortunately, the following theorems allow us to significantly prune the search space
so as to render the test tractable.

Theorem 4.3.3
If P(bi | x̂) is identifiable for one minimal setBi, thenP(bj | x̂) is identifiable for any
other minimal setBj .

Theorem 4.3.3 allows us to test Condition 3 with a single minimal blocking setB. If B
meets the requirements of Condition 3 then the query is identifiable; otherwise, Condi-
tion 3 cannot be satisfied. In proving this theorem, we use the following lemma.
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Y2

Y1

Z

X

Figure 4.3 Theorem 4.3.1 ensures a reducing sequence forP(y2 | x̂, y1) and
P(y1 | x̂), although none exists forP(y1 | x̂, y2).

Lemma 4.3.4
If the queryP(y | x̂) is identifiable and if a set of nodes Z lies on a directed path from X
to Y, then the queryP(z | x̂) is identifiable.

Theorem 4.3.5
LetY1 andY2 be two subsets of nodes such that either(i) no nodesY1 are descendants of
X or (ii) all nodesY1 andY2 are descendants of X and all nodesY1 are nondescendants
of Y2. A reducing sequence forP(y1, y2 | x̂) exists( per Corollary 3.4.2) if and only if
there are reducing sequences for bothP(y1 | x̂) andP(y2 | x̂, y1).

The probabilityP(y1, y2 | x̂)might pass the test in Theorem 4.3.1 if we apply the proce-
dure to bothP(y2 | x̂, y1) andP(y1 | x̂), but if we try to apply the test toP(y1 | x̂, y2)

then we will not find a reducing sequence of rules. Figure 4.3 shows just such an exam-
ple. Theorem 4.3.5 guarantees that, if there is a reducing sequence forP(y1, y2 | x̂),
then we should always be able to find such a sequence for bothP(y1 | x̂) andP(y2 |
x̂, y1) by proper choice ofY1.

Theorem 4.3.6
If there exists a setZ1 that meets all of the requirements forZ1 in Condition 4, then the
set consisting of the children of X intersected with the ancestors of Y will also meet all of
the requirements forZ1 in Condition 4.

Theorem 4.3.6 removes the need to search forZ1 in Condition 4 of Theorem 4.3.1. Proofs
of Theorems 4.3.3–4.3.6 are given in Galles and Pearl (1995).

4.3.3 Deriving a Closed-Form Expression for Control Queries

The algorithm defined by Theorem 4.3.1 not only determines the identifiability of a con-
trol query but also provides a closed-form expression forP(y | x̂) in terms of the observed
probability distribution (when such a closed form exists) as follows.

Function: ClosedForm(P(y | x̂)).
Input: Control query of the form P(y | x̂).
Output: Either a closed-form expression for P(y | x̂), in terms of observed

variables only, or fail when the query is not identifiable.

1. If (X⊥⊥Y )G
X

then return P(y).

2. Otherwise, if (X⊥⊥Y )GX then return P(y | x).
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3. Otherwise, let B = BlockingSet(X, Y ) and Pb = ClosedForm(b | x̂); if
Pb 6= fail then return

∑
b P(y | b, x) ∗ Pb.

4. Otherwise, let Z1= Children(X) ∩ (Y ∪Ancestors(Y )),
Z3 = BlockingSet(X,Z1), Z4 = BlockingSet(Z1, Y ), and Z2 = Z3 ∪ Z4;
if Y /∈Z1 and X /∈Z2 then return∑

z1,z2

∑
x ′ P(y | z1, z2, x

′)P(x ′ | z2)P(z1 | x, z2)P(z2).

5. Otherwise, return fail.

Steps 3 and 4 invoke the function BlockingSet(X, Y ),which selects a set of nodesZ that
d-separateX fromY. Such sets can be found in polynomial time (Tian et al. 1998). Step 3
contains a recursive call to the algorithm ClosedForm(b | x̂) itself, in order to obtain an
expression for causal effectP(b | x̂).

4.3.4 Summary

The conditions of Theorem 4.3.1 sharply delineate the boundary between the class of
identifying models (such as those depicted in Figure 3.8) and nonidentifying models
(Figure 3.9). These conditions lead to an effective algorithm for determining the identifi-
ability of control queries of the typeP(y | x̂),whereX is a single variable. Such queries
are identifiable indo calculus if and only if they meet the conditions of Theorem 4.3.1.
The algorithm further gives a closed-form expression for the causal effectP(y | x̂) in
terms of estimable probabilities.

Applications to causal analysis of nonexperimental data in the social and medical sci-
ences are discussed in Chapter 3 and further elaborated in Chapters 5 and 6. In Chapter 9
(Corollary 9.2.17) we will apply these results to problems ofcausal attribution,that is,
to estimate the probability that a specific observation (e.g., a disease case) is causally at-
tributable to a given event (e.g., exposure).

4.4 THE IDENTIFICATION OF PLANS

This section, based on Pearl and Robins (1995), concerns the probabilistic evaluation of
plans in the presence of unmeasured variables, where each plan consists of several con-
current or sequential actions and each action may be influenced by its predecessors in the
plan. We establish a graphical criterion for recognizing when the effects of a given plan
can be predicted from passive observations on measured variables only. When the cri-
terion is satisfied, a closed-form expression is provided for the probability that the plan
will achieve a specified goal.

4.4.1 Motivation

To motivate the discussion, consider an example discussed in Robins (1993, apx. 2), as de-
picted in Figure 4.4. The variablesX1 andX2 stand for treatments that physicians prescribe
to a patient at two different times,Z represents observations that the second physician
consults to determineX2, andY represents the patient’s survival. The hidden variablesU1

andU2 represent, respectively, part of the patient’s history and the patient’s disposition
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X2

U1

U2

X1

Z

Y

Figure 4.4 The problem of evaluating the effect of the
plan (do(x1), do(x2)) on Y, from nonexperimental data
taken onX1, Z, X2, andY.

to recover. A simple realization of such structure could be found among AIDS patients,
whereZ represents episodes of PCP. This is a common opportunistic infection of AIDS
patients that (as the diagram shows) does not have a direct effect on survivalY because it
can be treated effectively, but it is an indicator of the patient’s underlying immune status
(U2),which can cause death. The termsX1 andX2 stand for bactrim, a drug that prevents
PCP(Z) and may also prevent death by other mechanisms. Doctors used the patient’s
earlier PCP history(U1) to prescribeX1, but its value was not recorded for data analysis.

The problem we face is as follows. Assume we have collected a large amount of
data on the behavior of many patients and physicians, which is summarized in the form
of (an estimated) joint distributionP of the observed four variables(X1, Z,X2, Y ). A
new patient comes in, and we wish to determine the impact of the (unconditional) plan
(do(x1), do(x2)) on survival, wherex1 andx2 are two predetermined dosages of bactrim
to be administered at two prespecified times.

In general, our problem amounts to that of evaluating a new plan by watching the
performance of other planners whose decision strategies are indiscernible. Physicians
do not provide a description of all inputs that prompted them to prescribe a given treat-
ment; all they communicate to us is thatU1 was consulted in determiningX1 and that
Z andX1 were consulted in determiningX2. But U1, unfortunately, was not recorded.
In epidemiology, the plan evaluation problem is known as “time-varying treatment with
time-varying confounders” (Robins1993). In artificial intelligence applications, the eval-
uation of such plans enables one agent to learn to act by observing the performance of
another agent, even in cases where the actions of the other agent are predicated on fac-
tors that are not visible to the learner. If the learner is permitted to act as well as observe,
then the task becomes much easier: the topology of the causal diagram could also be in-
ferred (at least partially), and the effects of some previously unidentifiable actions could
be determined.

As in the identification of actions (Section 4.3), the main problem in plan identifica-
tion is the control of “confounders,” that is, unobserved factors that trigger actions and
simultaneously affect the response. However, unlike the problem treated in Section 4.3,
plan identification is further complicated by the fact that some of the confounders (e.g.
Z) are affected by control variables. As remarked in Chapter 3, one of the deadliest sins
in the design of statistical experiments (Cox 1958, p. 48) is to adjust for such variables,
because the adjustment would simulate holding a variable constant; holding constant a
variable that stands between an action and its consequence interferes with the very quan-
tity we wish estimate – the total effect of that action.
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Two other features of Figure 4.4 are worth noting. First, the quantityP(y | x̂1, x̂2)

cannot be computed if we treat the control variablesX1 andX2 as a single compound
variableX. The graph corresponding to such compounding would depictX as connected
to Y by both an arrow and a curved arc (throughU) and thus would form a bow pat-
tern (see Figure 3.9), which is indicative of nonidentifiability. Second, the causal effect
P(y | x̂1) in isolation is not identifiable becauseU1 creates a bow pattern around the link
X I Z, which lies on a directed path fromX to Y (see the discussion in Section 3.5).

The feature that facilitates the identifiability ofP(y | x̂1, x̂2) is the identifiability of
P(y | x1, z, x̂2) – the causal effect of the actiondo(X2 = x2) alone, conditioned on the
observations available at the time of this action. This can be verified using the back-door
criterion, observing that{X1, Z} blocks all back-door paths betweenX2 andY. Thus, the
identifiability of P(y | x̂1, x̂2) can be readily proven by writing

P(y | x̂1, x̂2) = P(y | x1, x̂2) (4.1)

=
∑
z

P(y | z, x1, x̂2)P(z | x1) (4.2)

=
∑
z

P(y | z, x1, x2)P(z | x1), (4.3)

where (4.1) and (4.3) follow from Rule 2, and (4.2) follows from Rule 3. The subgraphs
that permit the application of these rules are shown in Figure 4.5 (in Section 4.4.3).

This derivation also highlights how conditional plans can be evaluated. Assume we
wish to evaluate the effect of the plan{do(X1= x1), do(X2 = g(x1, z))}. Following the
analysis of Section 4.2, we write

P(y | do(X1= x1), do(X2 = g(x1, z))) = P(y | x1, do(X2 = g(x1, z)))

=
∑
z

P(y | z, x1, do(X2 = g(x1, z)))P(z | x1)

=
∑
z

P(y | z, x1, x2)P(z | x1)|x2=g(x1,z).

Again, the identifiability of this conditional plan rests on the identifiability of the ex-
pressionP(y | z, x1, x̂2), which reduces toP(y | z, x1, x2) because{X1, Z} blocks all
back-door paths betweenX2 andY.

The criterion developed in the next section will enable us to recognize in general, by
graphical means, whether a proposed plan can be evaluated from the joint distribution on
the observables and, if so, to identify which covariates should be measured and how they
should be adjusted.

4.4.2 Plan Identification: Notation and Assumptions

Our starting point is a knowledge specification scheme in the form of a causal diagram,
like the one shown in Figure 4.4, that provides a qualitative summary of the analyst’s
understanding of the relevant data-generating processes.5

5 An alternative specification scheme using counterfactual statements was developed by Robins (1986,
1987), as described in Section 3.6.4.
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Notation

A control problemconsists of a directed acyclic graph (DAG)G with vertex setV, par-
titioned into four disjoint setsV = {X,Z,U, Y }, where

X = the set of control variables (exposures, interventions, treatments, etc.);

Z = the set of observed variables, often calledcovariates;

U = the set of unobserved (latent) variables; and

Y = an outcome variable.

We let the control variables be orderedX = X1, X2, . . . , Xn such that everyXk is a
nondescendant ofXk+j (j > 0) in G, and we let the outcomeY be a descendant ofXn.
LetNk stand for the set of observed nodes that are nondescendants of any element in the
set{Xk,Xk+1, . . . , Xn}. A plan is an ordered sequence(x̂1, x̂2, . . . , x̂n) of value assign-
ments to the control variables, wherex̂k means “Xk is set toxk.” A conditional planis an
ordered sequence(ĝ1(z1), ĝ2(z2), . . . , ĝn(zn)), where eachgk is a function from a setZk
to Xk and whereĝk(zk) stands for the statement “setXk to gk(zk) wheneverZk attains
the valuezk.” The supportZk of eachgk(zk) function must not contain any variables that
are descendants ofXk in G.

Our problem is toevaluatean unconditional plan6 by computingP(y | x̂1, x̂2, . . . , x̂n),

which represents the impact of the plan(x̂1, . . . , x̂n) on the outcome variableY. The
expressionP(y | x̂1, x̂2, . . . , x̂n) is said to beidentifiable in G if, for every assign-
ment(x̂1, x̂2, . . . , x̂n), the expression can be determined uniquely from the joint distri-
bution of the observables{X, Y,Z}. A control problem is identifiable wheneverP(y |
x̂1, x̂2, . . . , x̂n) is identifiable.

Our main identifiability criteria are presented in Theorems 4.41 and 4.4.6. These in-
voke d-separation tests on various subgraphs ofG, defined in the same manner as in
Section 4.3. We denote byG

X
(andGX, respectively) the graphs obtained by deleting

fromG all arrows pointing to (emerging from) nodes inX. To represent the deletion of
both incoming and outgoing arrows, we use the notationG

XZ
. Finally, the expression

P(y | x̂, z) , P(y, z | x̂)/P(z | x̂) stands for the probability ofY = y given thatZ = z
is observed andX is held constant atx.

4.4.3 Plan Identification: A General Criterion

Theorem 4.4.1(Pearl and Robins 1995)
The probabilityP(y | x̂1, . . . , x̂n) is identifiable if, for every1≤ k ≤ n, there exists a set
Zk of covariates satisfying

Zk ⊆ Nk, (4.4)

(i.e.,Zk consists of nondescendants of{Xk,Xk+1, . . . , Xn}) and

6 Identification of conditional plans can be obtained from Theorem 4.4.1 using the method described
in Section 4.2 and exemplified in Section 4.4.1.
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Figure 4.5 The two subgraphs ofG used in testing the identifiability of the plan(x̂1, x̂2) in Fig-
ure 4.4.

(Y ⊥⊥Xk | X1, . . . , Xk−1, Z1, Z2, . . . , Zk)G
Xk,Xk+1,. . . ,Xn

. (4.5)

When these conditions are satisfied, the effect of the plan is given by

P(y | x̂1, . . . , x̂n) =
∑

z1,. . . ,zn

P(y | z1, . . . , zn, x1, . . . , xn)

×
n∏
k=1

P(zk | z1, . . . , zk−1, x1, . . . , xk−1). (4.6)

Before presenting its proof, let us demonstrate how Theorem 4.4.1 can be used to test the
identifiability of the control problem shown in Figure 4.4. First, we will show thatP(y |
x̂1, x̂2) cannot be identified without measuringZ; in other words, that the sequenceZ1=
∅, Z2 = ∅ would not satisfy conditions (4.4)–(4.5). The twod-separation tests encoded
in (4.5) are

(Y ⊥⊥X1)G
X1,X2

and (Y ⊥⊥X2 | X1)GX2
.

The two subgraphs associated with these tests are shown in Figure 4.5. We see that
(Y ⊥⊥X1) holds inG

X1,X2
but that(Y ⊥⊥X2 | X1) fails to hold inGX2. Thus, in order to

pass the test, we must have eitherZ1= {Z} orZ2 = {Z}; sinceZ is a descendant ofX1,

only the second alternative satisfies (4.4). The tests applicable to the sequenceZ1 = ∅,
Z2 = {Z} are(Y ⊥⊥X1)G

X1,X2
and(Y ⊥⊥X2 | X1, Z)GX2

. Figure 4.5 shows that both tests

are now satisfied, because{X1, Z} d-separatesY fromX2 in GX2. Having satisfied con-
ditions (4.4)–(4.5), equation (4.6) provides a formula for the effect of plan(x̂1, x̂2) onY :

P(y | x̂1, x̂2) =
∑
z

P(y | z, x1, x2)P(z | x1), (4.7)

which coincides with (4.3).
The question naturally arises of whether the sequenceZ1= ∅, Z2 = {Z} can be iden-

tified without exhaustive search. This question will be answered in Corollary 4.4.5 and
Theorem 4.4.6.
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Proof of Theorem 4.4.1
The proof given here is based on the inference rules ofdo calculus (Theorem 3.4.1), which
facilitate the reduction of causal effect formulas to hat-free expressions. An alternative
proof, using latent variable elimination, is given in Pearl and Robins (1995).

Step 1.The conditionZk ⊆ Nk impliesZk ⊆ Nj for all j ≥ k. Therefore, we have

P(zk | z1, . . . , zk−1, x1, . . . , xk−1, x̂k, x̂k+1, . . . , x̂n)

= P(zk | z1, . . . , zk−1, x1, . . . , xk−1).

This is so because no node in{Z1, . . . , Zk,X1, . . . , Xk−1} can be a descendant of any node
in {Xk, . . . , Xn}. Hence, Rule 3 allows us to delete the hat variables from the expression.

Step 2.The condition in (4.5) permits us to invoke Rule 2 and write:

P(y | z1, . . . , zk, x1, . . . , xk−1, x̂k, x̂k+1, . . . , x̂n)

= P(y | z1, . . . , zk, x1, . . . , xk−1, xk, x̂k+1, . . . , x̂n).

Thus, we have

P(y | x̂1, . . . , x̂n)

=
∑
z1

P(y | z1, x̂1, x̂2, . . . , x̂n)P(z1 | x̂1, . . . , x̂n)

=
∑
z1

P(y | z1, x1, x̂2, . . . , x̂n)P(z1)

=
∑
z2

∑
z1

P(y | z1, z2, x1, x̂2, . . . , x̂n)P(z1)P(z2 | z1, x1, x̂2, . . . , x̂n)

=
∑
z2

∑
z1

P(y | z1, z2, x1, x2, x̂3, . . . , x̂n)P(z1)P(z2 | z1, x1)

...

=
∑
zn

· · ·
∑
z2

∑
z1

P(y | z1, . . . , zn, x1, . . . , xn)

× P(z1)P(z2 | z1, x1) · · ·P(zn | z1, x1, z2, x2, . . . , zn−1, xn−1)

=
∑

z1,. . . ,zn

P(y | z1, . . . , zn, x1, . . . , xn)

n∏
k=1

P(zk | z1, . . . , zk−1, x1, . . . , xk−1).

Definition 4.4.2 (Admissible Sequence andG-Identifiability)
Any sequenceZ1, . . . , Zn of covariates satisfying the conditions in(4.4)–(4.5)will be
called admissible,and any expressionP(y | x̂1, x̂2, . . . , x̂n) that is identifiable by the
criterion of Theorem 4.4.1 will be called G-identifiable.7

7 The term “G-admissibility” was used in Pearl and Robins (1995) to evoke two associations:
(1) Robins’sG-estimationformula (equation (3.63)), which coincides with (4.6) whenG is com-
plete and contains no unobserved confounders; and (2) thegraphical nature of the conditions in
(4.4)–(4.5).
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Figure 4.6 An admissible choiceZ1 = W that rules out
any admissible choice forZ2. The choiceZ1 = ∅ would
permit the construction of an admissible sequence(Z1 =
∅, Z2 = ∅).

The following corollary is immediate.

Corollary 4.4.3
A control problem is G-identifiable if and only if it has an admissible sequence.

The property ofG-identifiability is sufficient but not necessary for general plan identifi-
ability as defined in Section 4.4.2. The reasons are twofold. First, the completeness of
the three inference rules ofdo calculus is still a pending conjecture. Second, thek th step
in the reduction of (4.6) refrains from conditioning on variablesZk that are descendants
of Xk – namely, variables that may be affected by the actiondo(Xk = xk). In certain
causal structures, the identifiability of causal effects requires that we condition on such
variables, as demonstrated by the front-door criterion (Theorem 3.3.4).

4.4.4 Plan Identification: A Procedure

Theorem 4.4.1 provides a declarative condition for plan identifiability. It can be used to
ratify that a proposed formula is valid for a given plan, but it does not provide an effec-
tive procedure for deriving such formulas because the choice of eachZk is not spelled out
procedurally. The possibility exists that some unfortunate choice ofZk satisfying (4.4)
and (4.5) might prevent us from continuing the reduction process even though another
reduction sequence is feasible.

This is illustrated in Figure 4.6. HereW is an admissible choice forZ1, but if we
make this choice then we will not be able to complete the reduction, since no setZ2

can be found that satisfies condition (4.5):(Y ⊥⊥X2 | X1,W,Z2)GX2
. In this example it

would be wiser to chooseZ1 = Z2 = ∅, which satisfies both(Y ⊥⊥X1 | ∅)G
X1,X2

and
(Y ⊥⊥X2 | X1,∅)GX2

.

The obvious way to avoid bad choices of covariates, like the one illustrated in Fig-
ure 4.6, is to insist on always choosing a “minimal”Zk, namely, a set of covariates sat-
isfying (4.5) that has no proper subset satisfying (4.5). However, since there are usually
many such minimal sets (see Figure 4.7), the question remains of whether every choice
of a minimalZk is “safe”: Can we be sure that no choice of a minimal subsequence
Z1, . . . , Zk will ever prevent us from finding an admissibleZk+1 when some admissible
sequenceZ∗1, . . . , Z

∗
n exists?
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X1

X2

Z 1

Y
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Z 1

Figure 4.7 Nonuniqueness of minimal admissible sets:Z1 and
Z ′1 are each minimal and admissible, since(Y ⊥⊥X1 | Z1) and
(Y ⊥⊥X1 | Z ′1) both hold inG

X1,X2
.

The next result guarantees the safety of every minimal subsequenceZ1, . . . , Zk and
hence provides an effective test forG-identifiability.

Theorem 4.4.4
If there exists an admissible sequenceZ∗1, . . . , Z

∗
n then, for every minimally admissible

subsequenceZ1, . . . , Zk−1 of covariates, there is an admissible setZk.

A proof is given in Pearl and Robins (1995).
Theorem 4.4.4 now yields an effective decision procedure for testingG-identifiability

as follows.

Corollary 4.4.5
A control problem is G-identifiable if and only if the following algorithm exits with success.

1. Setk = 1.

2. Choose any minimalZk ⊆ Nk satisfying(4.5).

3. If no suchZk exists then exit with failure; else setk = k +1.

4. If k = n+1 then exit with success; else return to step2.

A further variant of Theorem 4.4.4 can be stated that avoids the search for minimal setsZk.

This follows from the realization that, if an admissible sequence exists, we can rewrite
Theorem 4.4.1 in terms of an explicit sequence of covariatesW1,W2, . . . ,Wn that can
easily be identified inG.

Theorem 4.4.6
The probabilityP(y | x̂1, . . . , x̂n) is G-identifiable if and only if the following condition
holds for every1≤ k ≤ n:

(Y ⊥⊥Xk | X1, . . . , Xk−1,W1,W2, . . . ,Wk)G
Xk,Xk+1,. . . ,Xn

,

whereWk is the set of all covariates in G that are both nondescendants of{Xk,Xk+1, . . . ,

Xn} and have either Y orXk as descendant inG
Xk,Xk+1,. . . ,Xn

. Moreover, if this condition
is satisfied then the plan evaluates as

P(y | x̂1, . . . , x̂n) =
∑

w1,. . . ,wn

P(y | w1, . . . , wn, x1, . . . , xn)

×
n∏
k=1

P(wk | w1, . . . , wk−1, x1, . . . , xk−1). (4.8)
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Figure 4.8 Causal diagramG in which proper ordering of the control variablesX1 andX2 is
important.

A proof of Theorem 4.4.6, together with several generalizations, can be found in Pearl and
Robins (1995) and Robins (1997). Extensions toG-identifiability are reported in Kuroki
and Miyakawa (1999).

The reader should note that, although Corollary 4.4.5 and Theorem 4.4.6 are pro-
cedural in the sense of offering systematic tests for plan identifiability, they are still
order-dependent.It is quite possible that an admissible sequence exists in one order-
ing of the control variables and not in another when both orderings are consistent with
the arrows inG. The graphG in Figure 4.8 illustrates such a case. It is obtained from
Figure 4.4 by deleting the arrowsX1 I X2 andX1 I Z, so that the two control vari-
ables(X1 andX2) can be ordered arbitrarily. The ordering(X1, X2) would still admit the
admissible sequence(∅, Z) as before, but no admissible sequence can be found for the
ordering(X2, X1). This can be seen immediately from the graphGX1, in which (accord-
ing to (4.5) withk = 1) we need to find a setZ such that{X2, Z} d-separatesY fromX1.

No such set exists.
The implication of this order sensitivity is that, wheneverG permits several order-

ings of the control variables, all orderings need be examined before we can be sure that a
plan is notG-identifiable. Whether an effective search exists through the space of such
orderings remains an open question.

4.5 DIRECT EFFECTS AND THEIR IDENTIFICATION

4.5.1 Direct versus Total Effects

The causal effect we have analyzed so far,P(y | x̂), measures thetotal effect of a vari-
able (or a set of variables)X on a response variableY. In many cases, this quantity does
not adequately represent the target of investigation and attention is focused instead on
the direct effect ofX on Y. The term “direct effect” is meant to quantify an effect that
is not mediated by other variables in the model or, more accurately, the sensitivity ofY

to changes inX while all other factors in the analysis are held fixed. Naturally, holding
those factors fixed would sever all causal paths fromX to Y with the exception of the
direct linkX I Y, which is not intercepted by any intermediaries.
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A classical example of the ubiquity of direct effects (see Hesslow 1976; Cartwright
1989) tells the story of a birth-control pill that is suspect of producing thrombosis in
women and, at the same time, has a negative indirect effect on thrombosis by reduc-
ing the rate of pregnancies (pregnancy is known to encourage thrombosis). In this ex-
ample, interest is focused on the direct effect of the pill because it represents a sta-
ble biological relationship that, unlike the total effect, is invariant to marital status and
other social factors that may affect women’s chances of getting pregnant or of sustaining
pregnancy.

Another class of examples involves legal disputes over race or sex discrimination in
hiring. Here, neither the effect of sex or race on applicants’ qualification nor the effect
of qualification on hiring are targets of litigation. Rather, defendants must prove that sex
and race do notdirectly influence hiring decisions, whatever indirect effects they might
have on hiring by way of applicant qualification.

In all these examples, the requirement of holding the mediating variables fixed must
be interpreted as (hypothetically) setting these variables to constants by physical inter-
vention, not by analytical means such as selection, conditioning, or adjustment. For
example, it will not be sufficient to measure the association between the birth-control pill
and thrombosis separately among pregnant and nonpregnant women and then aggregate
the results. Instead, we must perform the study among women who became pregnant be-
fore the use of the pill and among women who prevented pregnancy by means other than
the drug. The reason is that, by conditioning on an intermediate variable (pregnancy in
the example), we may create spurious associations betweenX andY even when there is
no direct effect ofX onY. This can easily be illustrated in the modelX I Z J U I Y,

whereX has no direct effect onY. Physically holdingZ constant would permit no as-
sociation betweenX andY, as can be seen by deleting all arrows enteringZ. But if we
were to condition onZ, a spurious association would be created throughU (unobserved)
that might be construed as a direct effect ofX onY.

4.5.2 Direct Effects, Definition, and Identification

Controlling all variables in a problem is obviously a major undertaking, if not an impos-
sibility. The analysis of identification tells us under what conditions direct effects can be
estimated from nonexperimental data even without such control. Using ourdo(x) nota-
tion (or x̂ for short), we can express the direct effect as follows.

Definition 4.5.1 (Direct Effect)
The direct effect of X on Y is given byP(y | x̂, ŝXY ), whereSXY is the set of all endoge-
nous variables except X and Y in the system.

We see that the measurement of direct effects is ascribed to an ideal laboratory; the scien-
tist controls for all possible conditionsSXY and need not be aware of the structure of the
diagram or of which variables are truly intermediaries betweenX andY. Much of the ex-
perimental control can be eliminated, however, if we know the structure of the diagram.
For one thing, there is no need to actually holdall other variables constant; holding con-
stant the direct parents ofY (excludingX) should suffice. Thus, we obtain the following
equivalent definition of a direct effect.
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Corollary 4.5.2
The direct effect of X on Y is given byP(y | x̂, p̂aY\X), wherepaY\X stands for any re-
alization of the parents of Y, excluding X.

Clearly, ifX does not appear in the equation forY (equivalently, ifX is not a parent ofY ),
thenP(y | x̂, p̂aY\X) defines a constant distribution onY that is independent ofx, thus
matching our understanding of “having no direct effect.” In general, assuming thatX is
a parent ofY,Corollary 4.5.2 implies that the direct effect ofX onY is identifiable when-
everP(y | p̂aY ) is identifiable. Moreover, since the conditioning part of this expression
corresponds to a plan in which the parents ofY are the control variables, we conclude
that a direct effect is identifiable whenever the effect of the corresponding parents’ plan
is identifiable. We can now use the analysis of Section 4.4 and apply the graphical cri-
teria of Theorems 4.4.1 and 4.4.6 to the analysis of direct effects. In particular, we can
state our next theorem.

Theorem 4.5.3
LetPAY = {X1, . . . , Xk, . . . , Xm}. The direct effect of anyXk onY is identifiable whenever
the conditions of Corollary 4.4.5 hold for the plan(x̂1, x̂2, . . . , x̂m) in some admissible
ordering of the variables. The direct effect is then given by(4.8).

Theorem 4.5.3 implies that if the effect of one parent ofY is identifiable then the effect
of every parent ofY is identifiable as well. Of course, the magnitude of the effect would
differ from parent to parent, as seen in (4.8).

The following corollary is immediate.

Corollary 4.5.4
LetXj be a parent of Y. The direct effect ofXj on Y is, in general, nonidentifiable if there
exists a confounding arc that embraces any linkXk I Y.

4.5.3 Example: Sex Discrimination in College Admission

To illustrate the use of this result, consider the study of Berkeley’s alleged sex bias in
graduate admission (Bickel et al. 1975), where data showed a higher rate of admission
for male applicants overall but, when broken down by departments, a slight bias toward
female applicants. The explanation was that female applicants tend to apply to the more
competitive departments, where rejection rates are high; based on this finding, Berkeley
was exonerated from charges of discrimination. The philosophical aspects of such re-
versals, known as Simpson’s paradox, will be discussed more fully in Chapter 6. Here
we focus on the question of whether adjustment for department is appropriate for as-
sessing sex discrimination in college admission. Conventional wisdom has it that such
adjustment is appropriate because “We know that applying to a popular department (one
with considerably more applicants than positions) is just the kind of thing that causes re-
jection” (Cartwright 1983, p. 38), but we will soon see that additional factors should be
considered.

Let us assume that the relevant factors in the Berkeley example are configured as in
Figure 4.9, with the following interpretation of the variables:
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X2
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Z
Figure 4.9 Causal relationships relevant to Berkeley’s sex
discrimination study. Adjusting for department choice(X2)

or career objective(Z) (or both) would be inappropriate in
estimating the direct effect of gender on admission. The ap-
propriate adjustment is given in (4.10).

X1 = applicant’s gender;

X2 = applicant’s choice of department;

Z = applicant’s career objectives;

Y = admission outcome (accept /reject);

U = applicant’s aptitude (unrecorded).

Note thatU affects applicant’s career objective and also the admission outcomeY (say,
through verbal skills (unrecorded)).

Adjusting for department choice amounts to computing the following expression:

Ex2P(y | x̂1, x2) =
∑
x2

P(y | x1, x2)P(x2). (4.9)

In contrast, the direct effect ofX1 onY, as given by (4.7), reads

P(y | x̂1, x̂2) =
∑
z

P(y | z, x1, x2)P(z | x1). (4.10)

It is clear that the two expressions may differ substantially. The first measures the (aver-
age) effect of sex on admission among applicants to a given department, a quantity that is
sensitive to the fact that some gender–department combinations may be associated with
high admission rates merely because such combinations are indicative of certain aptitude
(U) that was unrecorded. The second expression eliminates such spurious associations
by separately adjusting for career objectives(Z) in each of the two genders.

To verify that (4.9) does not properly measure the direct effect ofX1 on Y, we note
that the expression depends on the value ofX1 even in cases where the arrow between
X1 andY is absent. Equation (4.10), on the other hand, becomes insensitive tox1 in such
cases – an exercise that we leave for the reader to verify.8

To cast this analysis in a concrete numerical setting, let us imagine a college consist-
ing of two departments,A andB, both admitting students on the basis of qualification,
Q, alone. Let us further assume (i) that the applicant pool consists of 100 males and 100
females and (ii) that 50 applicants in each gender have high qualifications (hence are ad-
mitted) and 50 have low qualifications (hence are rejected). Clearly, this college cannot
be accused of sex discrimination.

8 Hint: FactorizeP(y, u, z | x̂1, x̂2) using the independencies in the graph and eliminateu as in the
derivation of (3.27).
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Table 4.1. Admission Rate among Males and Females in Each Department

Males Females Total

Admitted Applied Admitted Applied Admitted Applied

Dept.A 50 50 0 0 50 50
Dept.B 0 50 50 100 50 150

Unadjusted 50% 50% 50%
Adjusted 25% 37.5%

A different result would surface, however, if we adjust for departments while ig-
noring qualifications, which amounts to using (4.9) to estimate the effect of gender on
admission. Assume that the nature of the departments is such thatall and onlyqualified
male applicants apply to departmentA, while all females apply to departmentB (see
Table 4.1).

We see from the table that adjusting for department would falsely indicate a bias of
37.5 : 25(= 3 : 2) in favor of female applicants. An unadjusted (sometimes called “crude”)
analysis happens to give the correct result in this example – 50% admission rate for males
and females alike – thus exonerating the school from charges of sex discrimination.

Our analysis is not meant to imply that the Berkeley study of Bickel et al. (1975)
is defective, or that adjustment for department was not justified in that study. The pur-
pose is to emphasize that no adjustment is guaranteed to give an unbiased estimate of
causal effects, direct or indirect, absent a careful examination of the causal assumptions
that ensure identification. Theorem 4.5.3 provides us with the understanding of those as-
sumptions and with a mathematical means of expressing them. We note that if applicants’
qualifications were not recorded in the data, then the direct effect of gender on admis-
sion will not be identifiable unless we can measure some proxy variable that stands in the
same relation toQ asZ stands toU in Figure 4.9.

4.5.4 Average Direct Effects

Readers versed in structural equation models (SEMs) will note that, in linear systems,
the direct effectE(Y | x̂, p̂aY\X) is fully specified by the path coefficient attached to the
link from X to Y (see (5.24) for mathematical definition); therefore, the direct effect is
independent of the valuespaY\X at which we hold the other parents ofY. In nonlinear
systems, those values would, in general, modify the effect ofX on Y and thus should
be chosen carefully to represent the target policy under analysis. For example, the direct
effect of a pill on thrombosis would most likely be different for pregnant and nonpreg-
nant women. Epidemiologists call such differences “effect modification” and insist on
separately reporting the effect in each subpopulation.

Although the direct effect is sensitive to the levels at which we hold the parents of
the outcome variable, it is sometimes meaningful to average the direct effect over those
levels. For example, if we wish to assess the degree of discrimination in a given school
without reference to specific departments, we should replace the controlled difference
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P(admission| m̂ale, d̂ept)− P(admission| f̂emale, d̂ept)

with some average of this difference over all departments. This average should measure
the increase in admission rate in a hypothetical experiment in which we instruct all female
candidates to retain their department preferences but change their gender identification
(on the application form) from female to male.

In general, the average direct effect is defined as the expected change inY induced
by changingX from x to x ′ while keeping the other parents ofY constant at whatever
value they obtain underdo(x). This hypothetical change is what lawmakers instruct us to
consider in race or sex discrimination cases: “The central question in any employment-
discrimination case is whether the employer would have taken the same action had the
employee been of a different race (age, sex, religion, national origin etc.) and everything
else had been the same.” (In Carson versus Bethlehem Steel Corp., 70 FEP Cases 921,
7th Cir. (1996)).

The formal expression for this hypothetical change involves probabilities of (nested)
counterfactuals (see Section 7.1 for semantics and computation) that cannot be written in
terms of thedo(x) operator.9 Therefore, the average direct effect cannot in general be
identified, even from data obtained under randomized control of all variables. However,
if certain assumptions of “no confounding” are deemed valid,10 then the average direct
effect can be reduced to

1x,x ′(Y ) =
∑
paY\X

[E(Y | x̂ ′, p̂aY\X)− E(Y | x̂, p̂aY\X)]P(paY\X | x̂), (4.11)

and the techniques developed in Section 4.4 for identifying control-specific plans,
P(y | x̂1, x̂2, . . . , x̂n), become applicable.
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