CHAPTER FOUR

Actions, Plans, and Direct Effects

He whose actions exceed his wisdom,
his wisdom shall endure.
Rabbi Hanina ben Dosa
(1st centurya.pn.)

Preface

So far, our analysis of causal effects has focused on primitive interventions of the form
do(x), which stood for setting the value of variabfeto a fixed constanty, and ask-

ing for the effect of this action on the probabilities of some response varigblaghis
chapter we introduce several extensions of this analysis.

First (Section 4.1), we discuss the status of actions vis-a-vis observations in proba-
bility theory, decision analysis, and causal modeling, and we advance the thesis that the
main role of causal models is to facilitate the evaluation of the effesbeélactions and
policies that were unanticipated during the construction of the model.

In Section 4.2 we extend the identification analysis of Chapter 3 to conditional actions
of the form “dox if you seez” and stochastic policies of the form “do with proba-
bility p if you seez.” We shall see that the evaluation and identification of these more
elaborate interventions can be obtained from the analysis of primitive interventions. In
Section 4.3, we use the intervention calculus developed in Chapter 3 to give a graphical
characterization of the set of semi-Markovian models for which the causal effect of one
variable on another can be identified.

We address in Section 4.4 the problem of evaluating the effect of sequential plans —
namely, sequences of time-varying actions (some taken concurrently) designed to pro-
duce a certain outcome. We provide a graphical method of estimating the effect of such
plans from nonexperimental observations in which some of the actions are influenced
by their predecessors, some observations are influenced by the actions, and some con-
founding variables are unmeasured. We show that there is substantial advantage to ana-
lyzing a plan into its constituent actions rather than treating the set of actions as a single
entity.

Finally, in Section 4.5 we address the question of distinguishing direct from indirect
effects. We show that direct effects can be identified by the graphical method developed
in Section 4.4. An example using alleged sex discrimination in college admission will
serve to demonstrate the assumptions needed for proper analysis of direct effects.
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108 Actions, Plans, and Direct Effects

4.1 INTRODUCTION

4.1.1 Actions, Acts, and Probabilities

Actions admit two interpretations: reactive and deliberative. The reactive interpretation
sees action as a consequence of an agent’s beliefs, disposition, and environmental inputs,
as in “Adam ate the apple because Eve handed it to him.” The deliberative interpretation
sees action as an option of choice in contemplated decision making, usually involving
comparison of consequences, as in “Adam was wondering what God would do if he ate
the apple.” We shall distinguish the two views by calling the first “act” and the second
“action.” An act is viewed from the outside, an action from the inside. Therefore, an
act can be predicted and can serve as evidence for the actor’s stimuli and motivations
(provided the actor is part of our model). Actions, in contrast, can neither be predicted
nor provide evidence since (by definition) they are pending deliberation and tuacisto
once executed.

The confusion between actions and acts has led to Newcomb’s paradox (Nozick 1969)
and other oddities in the so-called evidential decision theory, which encourages decision
makers to take into consideration the evidence that an action would provide, if enacted.
This bizarre theory seems to have loomed from Jeffrey’s influential BdekLogic of
Decision(Jeffrey 1965), in which actions are treated as ordinary events (rather than inter-
ventions) and, accordingly, the effects of actions are obtained through conditionalization
rather than through a mechanism-modifying operationdikéer). (See Stalnaker 1972;
Gibbard and Harper 1976; Skyrms 1980; Meek and Glymour 1994; Hitchcock 1996.)

Traditional decision theofyinstructs rational agents to choose the optighat max-
imizes expected utility,

Ux) =Y P(y | do(x))u(y),

whereu(y) is the utility of outcomey; in contrast, “evidential decision” theory calls for
maximizing the conditional expectation

Uel(x) = Y P(y | x)u(y),
y

in which x is (improperly) treated as an observed proposition.
The paradoxes that emerge from this fallacy are obvious: patients should avoid going
to the doctor “to reduce the probability that one is seriously ill” (Skyrms 1980, p. 130);

1 | purposely avoid the common title “causal decision theory” in order to suppress even the slightest
hint that any alternative, noncausal theory can be used to guide decisions.

2 Following a suggestion of Stalnaker (1972), Gibbard and Harper (1976)R(sed— y) in U(x),
rather thanP(y | do(x)), wherex O— y stands for the subjunctive conditional if it were x.”
The semantics of the two operators are closely related (see Section 7.4), but the equation-removal
interpretation of thelo(x) operator is less ambiguous and clearly suppresses inference from effect
to cause.
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workers should never hurry to work, to reduce the probability of having overslept; students
should not prepare for exams, lest this would prove them behind in their studies; and so
on. In short, all remedial actions should be banished lest they increase the probability
that a remedy is indeed needed.

The oddity in this kind of logic stems from treating actions as acts that are governed
by past associations instead of as objects of free choice, as dictated by the semantics of
thedo(x) operator. This “evidential” decision theory preaches that one should never ig-
nore genuine statistical evidence (in our case, the evidence that an act normally provides
regarding whether the act is needed), but decision theory proper reminds us that actions —
by their very definition — render such evidence irrelevant to the decision at hand, for ac-
tionschangethe probabilities that acts normally obgy.

The moral of this story can be summarized in the following mnemonic rhymes:

Whatever evidence an act might provide
On facts that preceded the act,

Should never be used to help one decide
On whether to choose that same act.

Evidential decision theory was a passing episode in the philosophical literature, and
no philosopher today takes the original version of this theory seriously. Still, some re-
cent attempts have been made to revive interest in Jeffrey’s expected utility by replacing
P(y | x) with P(y | x, K), whereK stands for various background contexts, chosen
to suppress spurious associations (as in (3.13)) (Price 1991; Hitchcock 1996). Such at-
tempts echo an overly restrictive empiricist tradition, according to which rational agents
live and die by one source of information — statistical associations — and hence expected
utilities should admit no other operation but Bayes’s conditionalization. This tradition
is rapidly giving way to a more accommodating conception: rational agents should act
according to theories of actions; naturally, such theories demand action-specific con-
ditionalization (e.gdo(x)) while reserving Bayes’s conditionalization for representing
passive observations (see Goldszmidt and Pearl 1992; Meek and Glymour 1994; Wood-
ward 1995).

In principle, actions are not part of probability theory, and understandably so: proba-
bilities capture normal relationships in the world, whereas actions represent interventions
that perturb those relationships. It is no wonder, then, that actions are treated as foreign
entities throughout the literature on probability and statistics; they serve neither as argu-
ments of probability expressions nor as events for conditioning such expressions.

Even in the statistical decision-theoretic literature (e.g. Savage 1954), where actions
are the main target of analysis, the symbols given to actions serve merely as indices for
distinguishing one probability function from another, not as entities that stand in logi-
cal relationships to the variables on which probabilities are defined. Savage (1954, p. 14)
defined “act” as a “function attaching a consequence to each state of the world,” and
he treated a chain of decisions, one leading to other, as a single decision. However, the

3 Such evidence is rendered irrelevant within the actor’s own probability space; in multiagent de-
cision situations, however, each agent should definitely be cognizant of how other agents might
interpret each of his pending “would-be” acts.
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logic that leads us to infer the consequences of actions and strategies from more elemen-
tary considerations is left out of the formalism. For example, consider the actions: “raise
taxes,” “lower taxes,” and “raise interest rates.” The consequences of all three actions
must be specified separately, prior to analysis; none can be inferred from the others. As
a result, if we are given two probabilitieBy and Py, denoting the probabilities prevail-

ing under actiong\ or B, respectively, there is no way we can deduce from this input the
probability P45 corresponding to the joint actiod A B or indeed any Boolean com-
bination of the propositiong and B. This means that, in principle, the impact of all
anticipated joint actions would need to be specified in advance — an insurmountable task.

The peculiar status of actions in probability theory can be seen most clearly in com-
parison to the status of observations. By specifying a probability funatien on the
possible states of the world, we automatically specify how probabilities should change
with every conceivable observatien since P(s) permits us to compute (by condition-
ing one) the posterior probabilitie® (E | e) for every pair of event& ande. However,
specifying P(s) tells us nothing about how probabilities should change in response to
an external actiodo(A). In general, if an actiodo(A) is to be described as a function
that takesP(s) and transforms it td?4(s), then P(s) tells us nothing about the nature of
P4(s), even whem is an elementary event for whidh(A) is well-defined (e.qg., “raise
the temperature by 1 degree” or “turn the sprinkler on”). With the exception of the triv-
ial requirement thaP,(s) be zero ifs implies—A, a requirement that applies uniformly
to every P(s), probability theory does not tell us hoy(s) should differ fromP,(s),
whereP’(s) is some other preaction probability function. ConditioningArs clearly
inadequate for capturing this transformation, as we have seen in many examples in Chap-
ters1and 3 (see e.g. Section 1.3.1), because conditioning represents passive observations
in an unchanging world whereas actions change the world.

Drawing analogy to visual perception, we may say that the information contained in
P(s) is analogous to a precise description of a three-dimensional object; it is sufficient
for predicting how that object will be viewed from any angle outside the object, but it
is insufficient for predicting how the object will be viewed if manipulated and squeezed
by external forces. Additional information about the physical properties of the object
must be supplied for making such predictions. By analogy, the additional information
required for describing the transformation frahs) to P,(s) should identify those ele-
ments of the world that remain invariant under the actiotA). This extra information
is provided by causal knowledge, and &-) operator enables us to capture the in-
variant elements (thus defining(s)) by locally modifying the graph or the structural
equations. The next section will compare this device to the way actions are handled in
standard decision theory.

4.1.2 Actions in Decision Analysis

Instead of introducing new operators into probability calculus, the traditional approach
has been to attribute the differences between seeing and doing to differences in the to-
tal evidence available. Consider the statements: “the barometer reading was observed to
be x” and “the barometer reading was set to lex€l The former helps us predict the
weather, the latter does not. While the evidence described in the first statement is limited
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to the reading of the barometer, the second statement also tells us that the barometer was
manipulated by some agent, and conditioning on this additional evidence should render
the barometer reading irrelevant to predicting the rain.

The practical aspects of this approach amount to embracing the acting agents as vari-
ables in the analysis, constructing an augmented distribution function including the de-
cisions of those agents, and inferring the effect of actions by conditioning those decision
variables to particular values. Thus, for example, the agent manipulating the barometer
might enter the system as a decision variable “squeezing the barometer”; after incorpo-
rating this variable into the probability distribution, we could infer the impact of manipu-
lating the barometer simply by conditioning the augmented distribution on the event “the
barometer was squeezed by foscand has reached level”

For this conditioning method to work properly in evaluating the effect of future ac-
tions, the manipulating agent must be treated as an ideal experimenter acting out of free
will, and the associated decision variables must be treated as exogenous — causally un-
affected by other variables in the system. For example, if the augmented probability
function encodes the fact that the current owner of the barometer tends to squeeze the
barometer each time she feels arthritis pain, we will be unable to use that function for
evaluating the effects of deliberate squeezing of the barometer, even by the same owner.
Recalling the difference between acts and actions, whenever we set out to calculate the ef-
fect of a pending action, we must ignore all mechanisms that constrained or triggered the
execution of that action in the past. Accordingly, the event“The barometer was squeezed”
must enter the augmented probability function as independent of all events that occurred
prior to the time of manipulation, similar to the way action variablentered the aug-
mented network in Figure 3.2.

This solution corresponds precisely to the way actions are treated in decision anal-
ysis, as depicted in the literature on influence diagrams (IDs) (Howard and Matheson
1981; Shachter 1986; Pearl 1988b, chap. 6). Each decision variable is represented as ex-
ogenous variable (a parentless node in the diagram), and its impact on other variables is
assessed and encoded in terms of conditional probabilities, similar to the impact of any
other parent node in the diagram.

The difficulty with this approach is that we need to anticipate in advance, and rep-
resent explicitly, all actions whose effects we might wish to evaluate in the future. This
renders the modeling process unduly cumbersome, if not totally unmanageable. In cir-
cuit diagnosis, for example, it would be awkward to represent every conceivable act of
component replacement (similarly, every conceivable connection to a voltage source,
current source, etc.) as a node in the diagram. Instead, the effects of such replacements
are implicit in the circuit diagram itself and can be deduced from the diagram, given its
causal interpretation. In econometric modeling likewise, it would be awkward to repre-
sent every conceivable variant of policy intervention as a new variable in the economic
equations. Instead, the effects of such interventions can be deduced from the structural

4 The ID literature’s insistence on divorcing the links in the ID from any causal interpretation (Howard
and Matheson 1981; Howard 1990) is at odds with prevailing practice. The causal interpretation is
what allows us to treat decision variables as root nodes, unassociated with all other nodes (except
their descendants).
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interpretation of those equations, if only we can tie the immediate effects of each policy
to the corresponding variables and parameters in the equations. The compound action
“raise taxes and lower interest rates,” for example, need not be introduced as a new vari-
able in the equations, because the effect of that action can be deduced if we have the
guantities “taxation level” and “interest rates” already represented as (either exogenous
or endogenous) variables in the equations.

The ability to predict the effect of interventions without enumerating those interven-
tions in advance is one of the main advantages we draw from causal modeling and one
of the main functions served by the notion of causation. Since the number of actions
or action combinations is enormous, they cannot be represented explicitly in the model
but rather must be indexed by the propositions that each action enforces directly. In-
direct consequences of enforcing those propositions are then inferred from the causal
relationships among the variables represented in the model. We will return to this theme
in Chapter 7 (Section 7.2.4), where we further explore the invariance assumptions that
must be met for this encoding scheme to work.

4.1.3 Actions and Counterfactuals

As an alternative to Bayesian conditioning, philosophers (Lewis 1976; Gardenfors 1988)
have studied another probability transformation called “imaging,” which was deemed
useful in the analysis of subjunctive conditionals and which more adequately represents
the transformations associated with actions. Whereas Bayes conditionin@ df )
transfers the entire probability mass from states excludeddyhe remaining states (in
proportion to their current probabilitie®(s)), imaging works differently: each excluded
states transfers its mass individually to a select set of st&t&s) that are considered to

be “closest” tos (see Section 7.4.3). Although providing a more adequate and general
framework for actions (Gibbard and Harper 1976), imaging leaves the precise specifica-
tion of the selection functiof*(s) almost unconstrained. Consequently, the problem of
enumerating future actions is replaced by the problem of encoding distances among states
in a way that would be both economical and respectful of common understanding of the
causal laws that operate in the domain. The second requirement is not trivial, consider-
ing that indirect ramifications of actions often result in worlds that are quite dissimilar to
the one from which we start (Fine 1975).

The difficulties associated with making the closest-world approach conform to causal
laws will be further elaborated in Chapter 7 (Section 7.4). The structural approach pur-
sued in this book escapes these difficulties by basing the notion of interventions directly
on causal mechanisms and by capitalizing on the properties of invariance and auton-
omy that accompany these mechanisms. This mechanism-modification approach can be
viewed as a special instance of the closest-world approach, where the closeness measure
is crafted so as to respect the causal mechanisms in the domain; the selection function
S*(s) that ensues is represented in (3.11) (see discussion that follows).

The operationality of this mechanism-modification semantics was demonstrated in
Chapter 3 and led to the quantitative predictions of the effects of actions, including ac-
tions that were not contemplated during the model’s construction.détwalculus that



4.2 Conditional Actions and Stochastic Policies 113

emerged (Theorem 3.4.1) extends this prediction facility to cases where some of the
variables are unobserved. In Chapter 7 we further use the mechanism-modification inter-
pretation to provide semantics for counterfactual statements, as outlined in Setton

In this chapter, we will extend the applications of thecalculus in several directions,

as outlined in the Preface.

4.2 CONDITIONAL ACTIONS AND STOCHASTIC POLICIES

The interventions considered in our analysis of identification (Sections 3.3-3.4) were
limited to actions that merely force a variable or a group of varialklés take on some
specified valuer. In general (see the process control example in Section 3.2.3), inter-
ventions may involve complex policies in which a variallds made to respond in a
specified way to some set of other variables — say, through a functional relationship
x = g(z) or through a stochastic relationship wherebyis set tox with probability
P*(x | z). We will show, based on Pearl (1994b), that identifying the effect of such poli-
cies is equivalent to identifying the expressiBfy | x, z).

Let P(y | do(X = g(z))) stand for the distribution (af ) prevailing under the policy
do(X = g(2)). To computeP(y | do(X = g(z))), we condition onZ and write

P(y | do(X = g())) = ) _ P(y | do(X = g(2)),2) Pz | do(X = ¢(2)))

Z

= ZP(.V | X, Z)|x=g(z)P(Z)

= EZ[P(y | x, Z)|x=g(z)]~
The equality

P(z | do(X = g(2))) = P(2)

stems, of course, from the fact thatannot be a descendantXf hence, any control ex-
erted onX can have no effect on the distributionsf Thus, we see that the causal effect
of a policydo(X = g(z)) can be evaluated directly from the expressiorPo¥ | x, z)
simply by substituting: (z) for x and taking the expectation ov&r(using the observed
distribution P(z)).

This identifiability criterion for conditional policy is somewhat stricter than that for
unconditional intervention. Clearly, if a poliedp(X = g(z)) is identifiable then the sim-
ple interventiordo(X = x) is identifiable as well, since we can always obtain the latter
by settingg(z) = x. The converse does not hold, however, because conditioniry on
might create dependencies that will prevent the successful reductiBaydf x, z) to a
hat-free expression.

A stochastic policy, which imposes a new conditional distributioiix | z) for x,
can be handled in a similar manner. We regard the stochastic intervention as a random
process in which the unconditional interventidw(X = x) is enforced with probability
P*(x | z). Thus, givenZ = z, the interventiondo(X = x) will occur with probability
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P*(x | z) and will produce a causal effect given By | x, z). Averaging overx and
z gives the effect (orY) of the stochastic policy*(x | z):

PO peein = ) Y POV 12,2 P*(x | )P ().

X Z

BecauseP*(x | z) is specified externally, we see again that the identifiability 6§ |
X, 7) is a necessary and sufficient condition for the identifiability of any stochastic policy
that shapes the distribution &f by the outcome of.

Of special importance in planning is a STRIPS-like action (Fikes and Nilsson 1971)
whose immediate effect§ = x depend on the satisfaction of some enabling precondi-
tion C(w) on a setW of variables. To represent such actions, weZlet W U PAx and
set

P(x | paxy) If C(w) = false,

P(x|z)=131 if C(w) = true andX = x,

0 if C(w) = true andX # x.

4.3 WHEN IS THE EFFECT OF AN ACTION IDENTIFIABLE?

In Chapter 3 we developed several graphical criteria for recognizing when the effect of
one variable on anotheR(y | do(x)), is identifiable in the presence of unmeasured
variables. These criteria, like the back-door (Theorem 3.3.2) and front-door (Theorem
3.3.4), are special cases of a more general class of semi-Markovian models for which
repeated application of the inference rulesiofcalculus (Theorem 3.4.1) will reduce

P(y | x) to a hat-free expression, thus rendering it identifiable. The semi-Markovian
model of Figure 3.1 (or Figure 3.8(f)) is an example where direct application of either the
back-door or front-door criterion would not be sufficient for identifyiRgy | x) and yet

the expression is reducible (hence identifiable) by a sequence of inference rules of Theo-
rem 3.4.1. In this section we establish a complete characterization of the class of models
in which the causal effed®(y | x) is identifiable indo calculus.

4.3.1 Graphical Conditions for Identification

Theorem 4.3.1 characterizes the class &-identifiable” models in the form of four
graphical conditions, any one of which is sufficient for the identificatioP 6y | x)
when X andY are singleton nodes in the graph. Theorem 4.3.2 then asserts the com-
pleteness (or necessity) of these four conditions; one of which must hold in the model for
P(y | %) to be identifiable indo calculus. Whether these four conditions are necessary
in general (in accordance with the semantics of Definition 3.2.4) depends on whether the
inference rules oflo calculus are complete. This question, to the best of my knowledge,
is still open.

Theorem 4.3.1(Galles and Pearl 1995)

Let X and Y denote two singleton variables in a semi-Markovian model characterized by
graph G. A sufficient condition for the identifiability 8{y | x) is that G satisfy one of

the following four conditions.
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Figure4.1 Condition 3 of Theorem 4.3.1. In (a), the
set{B1, B2} blocks all back-door paths froik to Y,
and P(b1, by | X) = P(by, by). In (b), the nodeB
blocks all back-door paths froi to Y, and P(b | X)

is identifiable using Condition 4.

@ (b)

1. There is no back-door path from X to Ydh that is, (X 1L Y)Gz.
There is no directed path from XtoY in G.

3. There exists a set of nodes B that blocks all back-door paths from X to Y so that
P(b | x) is identifiable.(A special case of this condition occurs whgmronsists
entirely of nondescendants &f in which caseP(b | x) reduces immediately to
P(b).)

4. There exist sets of nod&s and Z, such that:

(i) Z, blocks every directed path from X to(ive., (Y 1L X | Zl)Gz_l)_();
(i) Z, blocks all back-door paths betwegnand Y (i.e.,(Y 1L Z | ZZ)G)?ZI);

(iii) Z, blocks all back-door paths between X afdd (i.e., (X 1L Z; | ZZ)EX;
and

(iv) Z, does not activate any back-door paths from X t@i¥é., (X 1LY |
Z1, ZZ)GZ_lX(Tz)). (This condition holds i{i)—(iii) are met and nanember
of Z, is a descendant of.)

(A special case of condition 4 occurs whZa = ¢ and there is no back-door

path fromX to Z; or fromZ; to Y.)

Proof

Condition 1. This condition follows directly from Rule 2 (see Theorem 3.4.1). If
(Y 1L X)¢, then we can immediately chang&y | ) to P(y | x), so the query is iden-
tifiable.

Condition 2. If there is no directed path froki to Y in G, then(Y 1L X)G;. Hence,
by Rule 3,P(y | x) = P(y) and so the query is identifiable.

Condition 3. If there is a set of nodeB that blocks all back-door paths fromto Y
(i.e.,(Y L X | B)g,), then we can expan8l(y | x) as)_, P(y | X, b)P(b | x) and, by
Rule 2, rewriteP(y_| Xx,b) asP(y | x,b). If the query(b | x) is identifiable, then the
original query must also be identifiable. See examples in Figure 4.1.

Condition 4. If there is a set of nodeg; that block all directed paths froiX to Y
and a set of node3; that block all back-door paths betwegrandZ; in G, then we
expandP(y | x) = ZZLZZ P(y | X, z1,22) P(z1, 22 | ) and rewriteP(y | %, z1, z2) as
P(y | %, Z1, z2) using Rule 2, since all back-door paths betwgemndY are blocked by
Zin Gg. We can reduce(y | X, Z1, z2) to P(y | Z1, z2) using Rule 3, sinceY 1L X |
71, ZZ)GZ_;LX(TZ)' We can rewriteP(y | Z1,z2) asP(y | z1, z2) if (Y 1L Z1 | ZZ)GZ_1~ The
only way that this independence cannot hold is if there is a path #fdmZ; through
X, since(Y 1L Z; | ZZ)G)?Zl. However, we can block this path by conditioning and
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@ (b) ©
Figure 4.2 Condition 4 of Theorem 4.3.1. In (8, blocks all directed paths frork to Y, and the
empty set blocks all back-door paths frafnto Y in G and all back-door paths froki to Z; in G.
In (b) and (c),Z; blocks all directed paths fror to ¥, andZ, blocks all back-door paths from;
to Y in G5 and all back-door paths frotd to Z; in G.

summing ovetX and so derive_ , P(y | Z1, z2, x") P(x" | Z1, z2). Now we can rewrite
P(y | 21,22, x")asP(y | z1, z2, x') using Rule 2. TheP(x' | Z1, z2) term can be rewrit-
tenasP(x’ | zp) using Rule 3, sinc&; is a child ofX and the graph is acyclic. The query
can therefore be rewritten @zuz > Py | z1, 22, x)P(x" | z2)P(z1, 22 | %), and
we haveP(z1, z2 | X) = P(z2 | X) P(z1 | X, z2). SinceZ; consists of nondescendants of
X, we can rewriteP(z» | X) asP(z2) using Rule 3. Sinc&; blocks all back-door paths
from X to Z;, we can rewriteP(z1 | X, z2) asP(z1 | x, z2) using Rule 2. The entire
query canthus be rewrittenas_ > P(y | z1, 22, X ) P(x" | z2) P(z1 | x, 22) P(z2).
See examples in Figure 4.2. |

Theorem 4.3.2

The four conditions of Theorem 4.3.1 are necessary for identifiabildyp talculus. That

is, if all four conditions of Theorem 4.3.1 fail in a graph G, then there exists no finite
sequence of inference rules that redu@ss | x) to a hat-free expression.

A proof of Theorem 4.3.2 is given in Galles and Pearl (1995).

4.3.2 Remarks on Efficiency

In implementing Theorem 4.3.1 as a systematic method for determining identifiability,
Conditions 3 and 4 would seem to require exhaustive search. In order to prove that Con-
dition 3 does not hold, for instance, we need to prove that no such blockirng) can

exist. Fortunately, the following theorems allow us to significantly prune the search space
so as to render the test tractable.

Theorem 4.3.3
If P(b; | %) is identifiable for one minimal s&&;, then P(b; | X) is identifiable for any
other minimal sefB;.

Theorem 4.3.3 allows us to test Condition 3 with a single minimal blockin@s¢ft B
meets the requirements of Condition 3 then the query is identifiable; otherwise, Condi-
tion 3 cannot be satisfied. In proving this theorem, we use the following lemma.



4.3 When is the Effect of an Action Identifiable? 117

Figure 4.3 Theorem 4.3.1 ensures a reducing sequencePfor, | x, y1) and
P(y1 | x), although none exists faP(y; | X, y2).

Lemma 4.3.4
If the queryP(y | x) is identifiable and if a set of nodes Z lies on a directed path from X
toY, then the querP(z | x) is identifiable.

Theorem 4.3.5

LetY; andY, be two subsets of nodes such that eittieno nodes’; are descendants of
X or (i) all nodesY; andY; are descendants of X and all nodésare nondescendants
of Y,. A reducing sequence fd?(y1, y2 | x) exists(per Corollary 3.4.2 if and only if
there are reducing sequences for bdthy; | x) and P(y; | x, y1).

The probabilityP(y1, y2 | x) might pass the test in Theorem 4.3.1if we apply the proce-
dure to bothP(y, | X, y1) and P(y; | X), but if we try to apply the test t@(y1 | x, y2)

then we will not find a reducing sequence of rules. Figure 4.3 shows just such an exam-
ple. Theorem 4.3.5 guarantees that, if there is a reducing sequengéyiory, | x),

then we should always be able to find such a sequence forbgth| x) and P(y; |

X, y1) by proper choice of;.

Theorem 4.3.6

If there exists a sef; that meets all of the requirements {8 in Condition 4, then the

set consisting of the children of X intersected with the ancestors of Y will also meet all of
the requirements fog; in Condition 4.

Theorem 4.3.6 removes the need to searcZfon Condition 4 of Theorem 4.3.1. Proofs
of Theorems 4.3.3-4.3.6 are given in Galles and Pearl (1995).

4.3.3 Deriving a Closed-Form Expression for Control Queries

The algorithm defined by Theorem 4.3.1 not only determines the identifiability of a con-
trol query but also provides a closed-form expressioPfor | x) interms of the observed
probability distribution (when such a closed form exists) as follows.

Function: ClosedForniP(y | x)).
Input: Control query of the form P(y | X).

Output: Either a closed-form expression for P(y | x), in terms of observed
variables only, or FAIL when the query is not identifiable.

1. If (X 1L Y)G}_( then return P(y).
2. Otherwise, if (X 1L Y)¢, then return P(y | x).
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3. Otherwise, let B = BlockingSetX, Y) and Pb = ClosedFornib | x); if
Pb # FAIL thenreturn ), P(y | b, x) % Pb.

4, Otherwise, let Z; = Children(X) N (Y U AncestorsgY)),
Z3 = BlockingSetX, Z,), Z, = BlockingSetZ,,Y), and Zo = Z3U Zy;
if Y ¢ Zy and X ¢ Z, then return
Yoo 2w POV 120,22, X)P(x" | 22) P(21 | X, 22) P(22).

5. Otherwise, return FAIL.

Steps 3 and 4 invoke the function Blocking&€tY), which selects a set of nod&sthat
d-separat& fromY. Such sets can be found in polynomial time (Tian et al. 1998). Step 3
contains a recursive call to the algorithm ClosedF@rmx) itself, in order to obtain an
expression for causal effe®(b | x).

4.3.4 Summary

The conditions of Theorem 4.3.1 sharply delineate the boundary between the class of
identifying models (such as those depicted in Figure 3.8) and nonidentifying models
(Figure 3.9). These conditions lead to an effective algorithm for determining the identifi-
ability of control queries of the typ2(y | X), whereX is a single variable. Such queries

are identifiable indo calculus if and only if they meet the conditions of Theorem 4.3.1.
The algorithm further gives a closed-form expression for the causal éffect x) in

terms of estimable probabilities.

Applications to causal analysis of nonexperimental data in the social and medical sci-
ences are discussed in Chapter 3 and further elaborated in Chapters 5 and 6. In Chapter 9
(Corollary 9.2.17) we will apply these results to problemsafisal attribution that is,
to estimate the probability that a specific observation (e.g., a disease case) is causally at-
tributable to a given event (e.g., exposure).

4.4 THE IDENTIFICATION OF PLANS

This section, based on Pearl and Robins (1995), concerns the probabilistic evaluation of
plans in the presence of unmeasured variables, where each plan consists of several con-
current or sequential actions and each action may be influenced by its predecessors in the
plan. We establish a graphical criterion for recognizing when the effects of a given plan
can be predicted from passive observations on measured variables only. When the cri-
terion is satisfied, a closed-form expression is provided for the probability that the plan
will achieve a specified goal.

4.4.1 Motivation

To motivate the discussion, consider an example discussed in Robins (1993, apx. 2), as de-
pictedin Figure 4.4. The variablég andX, stand for treatments that physicians prescribe

to a patient at two different timeg, represents observations that the second physician
consults to determing,, andY represents the patient’s survival. The hidden variatiles
andUs represent, respectively, part of the patient’s history and the patient’s disposition
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U
//Ql

i U2 Figure 4.4 The problem of evaluating the effect of the
P plan (do(x1), do(x2)) on Y, from nonexperimental data
’ taken onXy, Z, X», andY.

to recover. A simple realization of such structure could be found among AIDS patients,
whereZ represents episodes of PCP. This is a common opportunistic infection of AIDS
patients that (as the diagram shows) does not have a direct effect on stirbieehuse it

can be treated effectively, but it is an indicator of the patient’s underlying immune status
(U,), which can cause death. The terfisand X, stand for bactrim, a drug that prevents
PCP(Z) and may also prevent death by other mechanisms. Doctors used the patient’s
earlier PCP historyU,) to prescribeX, but its value was not recorded for data analysis.

The problem we face is as follows. Assume we have collected a large amount of
data on the behavior of many patients and physicians, which is summarized in the form
of (an estimated) joint distributio® of the observed four variabldX, Z, X,,Y). A
new patient comes in, and we wish to determine the impact of the (unconditional) plan
(do(x1), do(x2)) on survival, where;; andx, are two predetermined dosages of bactrim
to be administered at two prespecified times.

In general, our problem amounts to that of evaluating a new plan by watching the
performance of other planners whose decision strategies are indiscernible. Physicians
do not provide a description of all inputs that prompted them to prescribe a given treat-
ment; all they communicate to us is thdt was consulted in determining; and that
Z and X; were consulted in determining,. But U;, unfortunately, was not recorded.

In epidemiology, the plan evaluation problem is known as “time-varying treatment with
time-varying confounders” (Robins 1993). In artificial intelligence applications, the eval-
uation of such plans enables one agent to learn to act by observing the performance of
another agent, even in cases where the actions of the other agent are predicated on fac-
tors that are not visible to the learner. If the learner is permitted to act as well as observe,
then the task becomes much easier: the topology of the causal diagram could also be in-
ferred (at least partially), and the effects of some previously unidentifiable actions could
be determined.

As in the identification of actions (Section 4.3), the main problem in plan identifica-
tion is the control of “confounders,” that is, unobserved factors that trigger actions and
simultaneously affect the response. However, unlike the problem treated in Section 4.3,
plan identification is further complicated by the fact that some of the confounders (e.g.
7) are affected by control variables. As remarked in Chapter 3, one of the deadliest sins
in the design of statistical experiments (Cox 1958, p. 48) is to adjust for such variables,
because the adjustment would simulate holding a variable constant; holding constant a
variable that stands between an action and its consequence interferes with the very quan-
tity we wish estimate — the total effect of that action.
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Two other features of Figure 4.4 are worth noting. First, the quaiity | x1, X2)
cannot be computed if we treat the control variabfesand X, as a single compound
variableX. The graph corresponding to such compounding would dépas connected
to Y by both an arrow and a curved arc (through and thus would form a bow pat-
tern (see Figure 3.9), which is indicative of nonidentifiability. Second, the causal effect
P(y | x1) inisolation is not identifiable becaugk creates a bow pattern around the link
X — Z, which lies on a directed path froxi to Y (see the discussion in Section 3.5).

The feature that facilitates the identifiability 8y | x1, £2) is the identifiability of
P(y | x1, z, X2) — the causal effect of the actialw (X, = x;) alone, conditioned on the
observations available at the time of this action. This can be verified using the back-door
criterion, observing thgtX;, Z} blocks all back-door paths betwe&n andY. Thus, the
identifiability of P(y | X1, X2) can be readily proven by writing

P(y | X1, X2) = P(y | x1, X2) 4.1)
=> P(y|z.x1,%) Pz | x1) (4.2)
=Y P(ylz.x1.x) Pz | x1), (4.3)

where (4.1) and (4.3) follow from Rule 2, and (4.2) follows from Rule 3. The subgraphs
that permit the application of these rules are shown in Figure 4.5 (in Section 4.4.3).

This derivation also highlights how conditional plans can be evaluated. Assume we
wish to evaluate the effect of the plého (X1 = x1), do(X> = g(x1, z))}. Following the
analysis of Section 4.2, we write

P(y | do(X1=x1),do(X2 = g(x1,2))) = P(y | x1, do(X2 = g(x1, 2)))
=Y P(y |z x1,do(X2=g(x1,2))P(z | x1)

Z

=Y P(y |2, 21, x) P2 | ¥D)|rp=gar.)-

Z

Again, the identifiability of this conditional plan rests on the identifiability of the ex-
pressionP(y | z, x1, X2), which reduces taP(y | z, x1, x2) becausd X1, Z} blocks all
back-door paths betweex, andY.

The criterion developed in the next section will enable us to recognize in general, by
graphical means, whether a proposed plan can be evaluated from the joint distribution on
the observables and, if so, to identify which covariates should be measured and how they
should be adjusted.

4.4.2 Plan Identification: Notation and Assumptions

Our starting point is a knowledge specification scheme in the form of a causal diagram,
like the one shown in Figure 4.4, that provides a qualitative summary of the analyst’s
understanding of the relevant data-generating procésses.

5 Analternative specification scheme using counterfactual statements was developed by Robins (1986,
1987), as described in Section 3.6.4.
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Notation

A control problemconsists of a directed acyclic graph (DAG)with vertex setV, par-
titioned into four disjoint set¥ = {X, Z, U, Y}, where

X = the set of control variables (exposures, interventions, treatments, etc.);
Z = the set of observed variables, often calbedariates

U = the set of unobserved (latent) variables; and

Y = an outcome variable.

We let the control variables be order&d= X;, X», ..., X,, such that every; is a
nondescendant of,, ; (j > 0) in G, and we let the outcomE be a descendant of,.

Let NV, stand for the set of observed nodes that are nondescendants of any element in the
set{Xy, Xi41, ..., X,,}. A planis an ordered sequenc¢g,, x», ..., x,) of value assign-

ments to the control variables, whetgemeans X, is set tax;.” A conditional planis an
ordered sequend@i(z1), £2(z2), ..., &.(z,)), where eacly, is a function from a sek

to X; and whereg, (z,) stands for the statement “s&f, to g (zx) wheneverZ, attains

the valuez;.” The supportZ, of eachg, (z,) function must not contain any variables that

are descendants &f; in G.

Our problemis t@valuatean unconditional plafby computingP(y | £1, X2, ..., Xn),
which represents the impact of the pléfy, ..., £,) on the outcome variabl& The
expressionP(y | Xi, X2, ..., X,) IS said to beidentifiablein G if, for every assign-
ment(xy, X2, ..., X,), the expression can be determined uniquely from the joint distri-
bution of the observablesy, Y, Z}. A control problem is identifiable wheneveéX(y |
X1, X2, ..., X,) is identifiable.

Our main identifiability criteria are presented in Theorems 4.41 and 4.4.6. These in-
voke d-separation tests on various subgraph&ofdefined in the same manner as in
Section 4.3. We denote bz (and Gy, respectively) the graphs obtained by deleting
from G all arrows pointing to (emerging from) nodesXh To represent the deletion of
both incoming and outgoing arrows, we use the notaGgy. Finally, the expression

P(y | %,2) £ P(y,z | %)/P(z | %) stands for the probability_df = ygiventhatZ =z
is observed and is held constant at.

4.4.3 Plan Identification: A General Criterion

Theorem 4.4.1(Pearl and Robins 1995)
The probabilityP(y | x1, ..., X,) is identifiable if, for everjl < k < n, there exists a set
Z, of covariates satisfying

(i.e., Z, consists of nondescendants{ &f,, X1, ..., X,}) and

6 |dentification of conditional plans can be obtained from Theorem 4.4.1 using the method described
in Section 4.2 and exemplified in Section 4.4.1.
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Figure 4.5 The two subgraphs aff used in testing the identifiability of the plariy, X) in Fig-
ure 4.4.

YL Xe | Xe, ooy Xu—1, Z1, Zo, ..., Zi)g, - o (4.5)
When these conditions are satisfied, the effect of the plan is given by

P(y|f1....8) = ) PV 121 .wesZn X1 oos )

1. Zn
n

X H Pzi | 22, ooy Zh—1, X1y + o+, Xg—1)- (4.6)
k=1

Before presenting its proof, let us demonstrate how Theorem 4.4.1 can be used to test the
identifiability of the control problem shown in Figure 4.4. First, we will show théy |

X1, X2) cannot be identified without measuri#g in other words, that the sequente=

@, Z, = @ would not satisfy conditions (4.4)—(4.5). The tweseparation tests encoded

in (4.5) are

YL X, o and (Y 1L X5 | X1)cy,-

The two subgraphs associated with these tests are shown in Figure 4.5. We see that
(Y 1L X7) holds inGi(L)—(2 but that(Y 1L X, | Xy) fails to hold inGx,. Thus, in order to

pass the test, we must have eitller= {Z} or Z, = {Z},; sinceZ is a descendant df;,

only the second alternative satisfies (4.4). The tests applicable to the se¢ijendé
Zo={Z}are(Y 1L Xl)le 5, and(Y 1L X, | Xy, Z)cy,- Figure 4.5 shows that both tests

are now satisfied, becaﬁﬁﬁl, 7} d-separate¥ from X; in Gy,. Having satisfied con-
ditions (4.4)—(4.5), equation (4.6) provides a formula for the effect of ptant,) onY:

P(y | %1, %2) = ) P(y | 2, x1,x2) P(z | x1), (4.7)

which coincides with (4.3).

The question naturally arises of whether the sequé&ice ¢, Z, = {Z} can be iden-
tified without exhaustive search. This question will be answered in Corollary 4.4.5 and
Theorem 4.4.6.
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Proof of Theorem 4.4.1
The proof given here is based on the inference rulés ahlculus (Theorem 3.4.1), which
facilitate the reduction of causal effect formulas to hat-free expressions. An alternative
proof, using latent variable elimination, is given in Pearl and Robins (1995).

Step 1.The conditionZ, € N; impliesZ; € N; for all j > k. Therefore, we have

P(Zi | 20 v vy Thols X1y vy Xkl Xy Xptds o n» Xpy)

=Pk | 20, -y Th=1, X1, -+, Xf—1).

This is so because no nod€{iny, ..., Z, X3, ..., X;_1} can be a descendant of any node
in {Xy, ..., X,,}. Hence, Rule 3 allows us to delete the hat variables from the expression.
Step 2. The condition in (4.5) permits us to invoke Rule 2 and write:

P(y | le‘Hvzkv-xlv--~1-xk719-£k7-x,\k+lv"'1)21’1)
= P(y | Zl’"‘7Zk7x17""xk—l5xk3x,\k+17""il‘l)‘

Thus, we have

P(y | X1, ..., %)

ZZP(Y | 21,9219)22“--,)211)P(Zl|)21,~~s)en)

21

=Y P(y |21 x1 %2, ... £0) P(21)

1
=> > P(ylz1z2. %1 %2, ... £) P20 P(22 | 22 %1, R2. .0 £0)

72 21

= Z Z P(y | Zl’ Z27 xla -x27 )237 ctc XAH)P(Z]_)P(ZZ | Zla xl)

22 21

ZZ”'ZZP()}|Z17"'1Zn9-x19'-"xl’l)
Zn 2 1

X P(Zl)P(ZZ | 21, xl) e P(Zn | 21, -xla 22, -x27 LR Zn—l’ xn—l)

n
= Z P(y|Z17"'5Z}’l9x19"'7-xn)1—[P(Zk|Zlﬂ"'7zkflaxl7"'sxk71)‘ D

Z1,---52n k=1

Definition 4.4.2 (Admissible Sequence anG-Identifiability)

Any sequencé€s, ..., Z, of covariates satisfying the conditions (#.4)—(4.5)will be
called admissible,and any expressio®(y | X1, X2, ..., X,) that is identifiable by the
criterion of Theorem 4.4.1 will be called-@8entifiable’

7 The term ‘G-admissibility” was used in Pearl and Robins (1995) to evoke two associations:
(1) Robins'sG-estimatiorformula (equation (3.63)), which coincides with (4.6) wh@ris com-
plete and contains no unobserved confounders; and (Yrephical nature of the conditions in
(4.4)—(4.5).
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Figure 4.6 An admissible choic&,; = W that rules out
any admissible choice fdf,. The choiceZ; = @ would
permit the construction of an admissible sequefite=
@, Z, = 0).

The following corollary is immediate.

Corollary 4.4.3
A control problem is G-identifiable if and only if it has an admissible sequence.

The property oiG-identifiability is sufficient but not necessary for general plan identifi-
ability as defined in Section 4.4.2. The reasons are twofold. First, the completeness of
the three inference rules @b calculus is still a pending conjecture. Second itiestep

in the reduction of (4.6) refrains from conditioning on variablgsthat are descendants

of X; — namely, variables that may be affected by the ac#ietX, = x;). In certain
causal structures, the identifiability of causal effects requires that we condition on such
variables, as demonstrated by the front-door criterion (Theorem 3.3.4).

4.4.4 Plan ldentification: A Procedure

Theorem 4.4.1 provides a declarative condition for plan identifiability. It can be used to
ratify that a proposed formula is valid for a given plan, but it does not provide an effec-
tive procedure for deriving such formulas because the choice of&gaismot spelled out
procedurally. The possibility exists that some unfortunate choicg, ofatisfying (4.4)
and (4.5) might prevent us from continuing the reduction process even though another
reduction sequence is feasible.

This is illustrated in Figure 4.6. Her® is an admissible choice fdfy, but if we
make this choice then we will not be able to complete the reduction, since ity set
can be found that satisfies condition (4.8): 1L X, | X1, W, ZZ)Gz(z' In this example it
would be wiser to choosg, = Z, = ¢, which satisfies botliY 1L X; | @)lej2 and
(Y UL X2 | X1, D)gy, - N

The obvious way to avoid bad choices of covariates, like the one illustrated in Fig-
ure 4.6, is to insist on always choosing a “minimal;, namely, a set of covariates sat-
isfying (4.5) that has no proper subset satisfying (4.5). However, since there are usually
many such minimal sets (see Figure 4.7), the question remains of whether every choice
of a minimal Z, is “safe”: Can we be sure that no choice of a minimal subsequence
Z1, ..., Z, will ever prevent us from finding an admissilite . ; when some admissible
sequencey, ..., Z; exists?
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u

Figure 4.7 Nonuniqueness of minimal admissible se; and
Z; are each minimal and admissible, sin@¢1L X; | Z;) and
(Y 1L X1 | Z}) both hold inG 5 .

The next result guarantees the safety of every minimal subseq@gnce, Z, and
hence provides an effective test iGridentifiability.

Theorem 4.4.4
If there exists an admissible sequer€k ..., Z; then, for every minimally admissible
subsequencgs, ..., Z,_, of covariates, there is an admissible ggt

A proof is given in Pearl and Robins (1995).
Theorem 4.4.4 now yields an effective decision procedure for teStiragntifiability
as follows.

Corollary 4.4.5
A control problemis G-identifiable if and only if the following algorithm exits with success.

1. Setk=1

2. Choose any minimat, € N, satisfying(4.5).

3. If no suchZz; exists then exit with failure; else set=k + 1.
4. If k = n + 1then exit with success; else return to sgep

Afurther variant of Theorem 4.4.4 can be stated that avoids the search for mininig| sets
This follows from the realization that, if an admissible sequence exists, we can rewrite
Theorem 4.4.1 in terms of an explicit sequence of covaridtgsV,, ..., W, that can
easily be identified irG.

Theorem 4.4.6
The probabilityP(y | x1, ..., X,) is G-identifiable if and only if the following condition
holds for everyi < k < n:

Y WL Xy | Xq, ooy Xy, We, Wo, o, Wi

= -
XXy 1o--- Xn

whereW, is the set of all covariates in G that are both nondescendan{t® of X1, ...,
X, } and have eitherY oK, as descendant tik Xosn.... Ko Moreover, if this condition
is satisfied then the plan evaluates as B

P(y|%1,....8) = Y P(wy...,wyx1,..., %)

n
X 1_[ P(wg | wy, ..., wr—1, X1, ..., Xk—1). (4.8)
k=1
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Figure 4.8 Causal diagranG in which proper ordering of the control variablég and X is
important.

A proof of Theorem 4.4.6, together with several generalizations, can be found in Pearl and
Robins (1995) and Robins (1997). Extensionstadentifiability are reported in Kuroki
and Miyakawa (1999).

The reader should note that, although Corollary 4.4.5 and Theorem 4.4.6 are pro-
cedural in the sense of offering systematic tests for plan identifiability, they are still
order-dependentlt is quite possible that an admissible sequence exists in one order-
ing of the control variables and not in another when both orderings are consistent with
the arrows inG. The graphG in Figure 4.8 illustrates such a case. It is obtained from
Figure 4.4 by deleting the arrow§, — X, andX; — Z, so that the two control vari-
ables(X; andX;) can be ordered arbitrarily. The orderiti;, X,) would still admit the
admissible sequena@, Z) as before, but no admissible sequence can be found for the
ordering(X», X1). This can be seen immediately from the grapj , in which (accord-
ing to (4.5) withk = 1) we need to find a sef such tha{X,, Z} d-separate¥ from Xj.

No such set exists.

The implication of this order sensitivity is that, whenewempermits several order-
ings of the control variables, all orderings need be examined before we can be sure that a
plan is notG-identifiable. Whether an effective search exists through the space of such
orderings remains an open question.

4.5 DIRECT EFFECTS AND THEIR IDENTIFICATION

45.1 Directversus Total Effects

The causal effect we have analyzed so fay | x), measures thiotal effect of a vari-

able (or a set of variablesj on a response variable In many cases, this quantity does

not adequately represent the target of investigation and attention is focused instead on
the direct effect ofX on Y. The term “direct effect” is meant to quantify an effect that

is not mediated by other variables in the model or, more accurately, the sensitivity of

to changes irX while all other factors in the analysis are held fixed. Naturally, holding
those factors fixed would sever all causal paths fiorto Y with the exception of the

direct link X — Y, which is not intercepted by any intermediaries.
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A classical example of the ubiquity of direct effects (see Hesslow 1976; Cartwright
1989) tells the story of a birth-control pill that is suspect of producing thrombosis in
women and, at the same time, has a negative indirect effect on thrombosis by reduc-
ing the rate of pregnancies (pregnancy is known to encourage thrombosis). In this ex-
ample, interest is focused on the direct effect of the pill because it represents a sta-
ble biological relationship that, unlike the total effect, is invariant to marital status and
other social factors that may affect women’s chances of getting pregnant or of sustaining
pregnancy.

Another class of examples involves legal disputes over race or sex discrimination in
hiring. Here, neither the effect of sex or race on applicants’ qualification nor the effect
of qualification on hiring are targets of litigation. Rather, defendants must prove that sex
and race do nadirectly influence hiring decisions, whatever indirect effects they might
have on hiring by way of applicant qualification.

In all these examples, the requirement of holding the mediating variables fixed must
be interpreted as (hypothetically) setting these variables to constants by physical inter-
vention, not by analytical means such as selection, conditioning, or adjustment. For
example, it will not be sufficient to measure the association between the birth-control pill
and thrombosis separately among pregnant and nonpregnant women and then aggregate
the results. Instead, we must perform the study among women who became pregnant be-
fore the use of the pill and among women who prevented pregnancy by means other than
the drug. The reason is that, by conditioning on an intermediate variable (pregnancy in
the example), we may create spurious associations bet¥eenY even when there is
no direct effect of onY. This can easily be illustrated inthe modél> Z «— U — Y,
whereX has no direct effect or. Physically holdingZ constant would permit no as-
sociation betweeX andY, as can be seen by deleting all arrows enteéindut if we
were to condition or¥, a spurious association would be created thraigdlinobserved)
that might be construed as a direct effecobn Y.

4.5.2 Direct Effects, Definition, and Identification

Controlling all variables in a problem is obviously a major undertaking, if not an impos-
sibility. The analysis of identification tells us under what conditions direct effects can be
estimated from nonexperimental data even without such control. Usingpguy nota-

tion (or x for short), we can express the direct effect as follows.

Definition 4.5.1 (Direct Effect)
The direct effect of X on Y is given By | X, Sxy), whereSyy is the set of all endoge-
nous variables except X and Y in the system.

We see that the measurement of direct effects is ascribed to an ideal laboratory; the scien-
tist controls for all possible conditiory and need not be aware of the structure of the
diagram or of which variables are truly intermediaries betwg&emdY. Much of the ex-
perimental control can be eliminated, however, if we know the structure of the diagram.
For one thing, there is no need to actually haldother variables constant; holding con-
stant the direct parents &f(excludingX) should suffice. Thus, we obtain the following
equivalent definition of a direct effect.
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Corollary 4.5.2
The direct effect of X on Y is given BYy | £, pay, x), wherepay, x stands for any re-
alization of the parents of Y, excluding X.

Clearly, if X does not appear in the equation fbfequivalently, ifX is not a parent of ),
thenP(y | X, pay, y) defines a constant distribution anthat is independent of, thus
matching our understanding of “having no direct effect.” In general, assuming tisat

a parent oft, Corollary 4.5.2 implies that the direct effect&fon Y is identifiable when-
everP(y | pay) is identifiable. Moreover, since the conditioning part of this expression
corresponds to a plan in which the parentgcére the control variables, we conclude
that a direct effect is identifiable whenever the effect of the corresponding parents’ plan
is identifiable. We can now use the analysis of Section 4.4 and apply the graphical cri-
teria of Theorems 4.4.1 and 4.4.6 to the analysis of direct effects. In particular, we can
state our next theorem.

Theorem 4.5.3

LetPAy = {X1,..., Xk, ..., X, }. The direct effect of an¥, onY is identifiable whenever
the conditions of Corollary 4.4.5 hold for the pldn,, x», ..., x,,) in some admissible
ordering of the variables. The direct effect is then giver{bh$).

Theorem 4.5.3 implies that if the effect of one parenvd$ identifiable then the effect
of every parent of is identifiable as well. Of course, the magnitude of the effect would
differ from parent to parent, as seen in (4.8).

The following corollary is immediate.

Corollary 4.5.4
LetX; be a parent of Y. The direct effect®f onY is, in general, nonidentifiable if there
exists a confounding arc that embraces any lifjk— Y.

4.5.3 Example: Sex Discrimination in College Admission

To illustrate the use of this result, consider the study of Berkeley’s alleged sex bias in
graduate admission (Bickel et al. 1975), where data showed a higher rate of admission
for male applicants overall but, when broken down by departments, a slight bias toward
female applicants. The explanation was that female applicants tend to apply to the more
competitive departments, where rejection rates are high; based on this finding, Berkeley
was exonerated from charges of discrimination. The philosophical aspects of such re-
versals, known as Simpson’s paradox, will be discussed more fully in Chapter 6. Here
we focus on the question of whether adjustment for department is appropriate for as-
sessing sex discrimination in college admission. Conventional wisdom has it that such
adjustment is appropriate because “We know that applying to a popular department (one
with considerably more applicants than positions) is just the kind of thing that causes re-
jection” (Cartwright 1983, p. 38), but we will soon see that additional factors should be
considered.

Let us assume that the relevant factors in the Berkeley example are configured as in
Figure 4.9, with the following interpretation of the variables:
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--TL Figure 4.9 Causalrelationships relevantto Berkeley's sex
e discrimination study. Adjusting for department choié&)
or career objectivéZ) (or both) would be inappropriate in
estimating the direct effect of gender on admission. The ap-
propriate adjustment is given in (4.10).

X, = applicant’s gender;
X, = applicant’s choice of department;

Z = applicant’s career objectives;

Y = admission outcome (accept/reject);
U = applicant’s aptitude (unrecorded).

Note thatU affects applicant’s career objective and also the admission out&ofsay,
through verbal skills (unrecorded)).
Adjusting for department choice amounts to computing the following expression:

Eq,P(y | f1,x2) = ) P(y | x1, x2) P(x2). (4.9)

x2

In contrast, the direct effect df; on Y, as given by (4.7), reads

P(y | 21,82 =) P(y|z,x1, %) P(z ] x2). (4.10)

Itis clear that the two expressions may differ substantially. The first measures the (aver-
age) effect of sex on admission among applicants to a given department, a quantity that is
sensitive to the fact that some gender—department combinations may be associated with
high admission rates merely because such combinations are indicative of certain aptitude
(U) that was unrecorded. The second expression eliminates such spurious associations
by separately adjusting for career objectiyZ9 in each of the two genders.

To verify that (4.9) does not properly measure the direct effecf;obn ¥, we note
that the expression depends on the valu&Xpéven in cases where the arrow between
X1 andY is absent. Equation (4.10), on the other hand, becomes insensitivantsuch
cases — an exercise that we leave for the reader to Verify.

To cast this analysis in a concrete humerical setting, let us imagine a college consist-
ing of two departmentsd and B, both admitting students on the basis of qualification,
Q, alone. Let us further assume (i) that the applicant pool consists of 100 males and 100
females and (ii) that 50 applicants in each gender have high qualifications (hence are ad-
mitted) and 50 have low qualifications (hence are rejected). Clearly, this college cannot
be accused of sex discrimination.

8 Hint: FactorizeP(y, u, z | X1, X2) using the independencies in the graph and eliminate in the
derivation of (3.27).
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Table 4.1. Admission Rate among Males and Females in Each Department

Males Females Total

Admitted  Applied Admitted Applied Admitted Applied

Dept.A 50 50 0 0 50 50
Dept.B 0 50 50 100 50 150
Unadjusted 50% 50% 50%
Adjusted 25% 37.5%

A different result would surface, however, if we adjust for departments while ig-
noring qualifications, which amounts to using (4.9) to estimate the effect of gender on
admission. Assume that the nature of the departments is suchllthat onlyqualified
male applicants apply to departmefit while all females apply to department (see
Table 4.1).

We see from the table that adjusting for department would falsely indicate a bias of
37.5:25= 3:2)infavor of female applicants. An unadjusted (sometimes called “crude”)
analysis happens to give the correct result in this example — 50% admission rate for males
and females alike — thus exonerating the school from charges of sex discrimination.

Our analysis is not meant to imply that the Berkeley study of Bickel et al. (1975)
is defective, or that adjustment for department was not justified in that study. The pur-
pose is to emphasize that no adjustment is guaranteed to give an unbiased estimate of
causal effects, direct or indirect, absent a careful examination of the causal assumptions
that ensure identification. Theorem 4.5.3 provides us with the understanding of those as-
sumptions and with a mathematical means of expressing them. We note that if applicants’
gualifications were not recorded in the data, then the direct effect of gender on admis-
sion will not be identifiable unless we can measure some proxy variable that stands in the
same relation t@ asZ stands tdJ in Figure 4.9.

4.5.4 Average Direct Effects

Readers versed in structural equation models (SEMs) will note that, in linear systems,
the direct effecE(Y | X, pay, y) is fully specified by the path coefficient attached to the
link from X to Y (see (5.24) for mathematical definition); therefore, the direct effect is
independent of the valugszy, x at which we hold the other parents Xf In nonlinear
systems, those values would, in general, modify the effect oh Y and thus should

be chosen carefully to represent the target policy under analysis. For example, the direct
effect of a pill on thrombosis would most likely be different for pregnant and nonpreg-
nant women. Epidemiologists call such differences “effect modification” and insist on
separately reporting the effect in each subpopulation.

Although the direct effect is sensitive to the levels at which we hold the parents of
the outcome variable, it is sometimes meaningful to average the direct effect over those
levels. For example, if we wish to assess the degree of discrimination in a given school
without reference to specific departments, we should replace the controlled difference
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P(admission male dep) — P(admission female dep)

with some average of this difference over all departments. This average should measure
the increase in admission rate in a hypothetical experimentin which we instruct all female
candidates to retain their department preferences but change their gender identification
(on the application form) from female to male.

In general, the average direct effect is defined as the expected chargeduaced
by changingX from x to x’ while keeping the other parents Bfconstant at whatever
value they obtain undeto(x). This hypothetical change is what lawmakers instruct us to
consider in race or sex discrimination cases: “The central question in any employment-
discrimination case is whether the employer would have taken the same action had the
employee been of a different race (age, sex, religion, national origin etc.) and everything
else had been the same.” (In Carson versus Bethlehem Steel Corp., 70 FEP Cases 921,
7th Cir. (1996)).

The formal expression for this hypothetical change involves probabilities of (nested)
counterfactuals (see Section 7.1 for semantics and computation) that cannot be written in
terms of thedo(x) operator? Therefore, the average direct effect cannot in general be
identified, even from data obtained under randomized control of all variables. However,
if certain assumptions of “no confounding” are deemed vAlithen the average direct
effect can be reduced to

Arw(Y)= Y [E(Y | X', Pay\x) — E(Y | &, Pay )] P(payx | %), (4.11)

pay\x

and the techniques developed in Section 4.4 for identifying control-specific plans,
P(y | X1, X2, ..., X,), become applicable.
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9 Using the counterfactual notation of Sectibf, thegeneral expression for the average direct ef-
fectis

Ax,x’(y) = E(YX’Z,‘) - E(Yx)v

whereZ = pay\ x. The subscripk’Z, represents the operation of settikigo x’ and, simultane-
ously, settingZ to whatever value it would have obtained under the setting x. This general
expression reduces to (4.11)4f, 1L Y., holds for allz. Likewise, the averagimdirect effect is
defined as£(Y,z,) — E(Yy).

10 See details in Technical Report R-273 posted on www.cs.ucla-gdiea/.



