CLASSES AND OBJECTS

parameter that suppresses throwing an exception on allocation failure),
then we can easily emulate it:

//in our custom header file "mynew.h"
struct nothrow { }; // dummy struct
void* operator new(size_t, nothrow) throw();

// implementation in a program
#include "mynew.h"

void* operator new(size_t s, nothrow) throw()

{
void* ptr;
try {
ptr = operator new(s);
}

catch(...) { // ensure it does not propagate the exception
return 0;

}

return ptr;
}//end new

If ptr =new X is used in a program, it results in a call of the “normal”
operator new (the one that throws exceptions on failure), whereas if
ptr = new(nothrow) X is used, it results in a call to the specialized new that
is guaranteed to return a pointer and throw no exceptions.

The term “placement syntax” comes from the most intended use of
the extra argument(s): to be used to “place” an object to a special loca-
tion. This particular overload of new can be found in the Standard Library.
It takes a void pointer to a segment of memory as an additional argument,
and is intended to be used whenever memory for the object has already
been allocated or reserved by other means. This so-called placement-
new does not allocate memory; instead, it uses the memory passed to it
(the programmer is responsible for ensuring the memory segment is big
enough) and then calls the appropriate constructor. We will discuss some
of the applications of placement-new in the next chapter.

The operator new is intended for dynamic creation of individual ob-
jects. For creation of arrays of objects, the operator new[size_t] must be

119



